The production of biogas from anaerobic digestion (AD) of residual agro-food biomasses represents an opportunity for alternative production of energy from renewable sources, according to the European Union legislation on renewable energy. This review provides an overview of the various aspects involved in this process with a focus on the best process conditions to be used for AD-based biogas production from residual agro-food biomasses. After a schematic description of the AD phases, the biogas plants with advanced technologies were described, pointing out the strengths and the weaknesses of the different digester technologies and indicating the main parameters and operating conditions to be monitored. Subsequently, a brief analysis of the factors affecting methane yield from manure AD was conducted and the AD of fruit and vegetables waste was examined. Particular attention was given to studies on co-digestion and pre-treatments as strategies to improve biogas yield. Finally, the selection of specific microorganisms and the genetic manipulation of anaerobic bacteria to speed up the AD process was illustrated. The open challenges concern the achievement of the highest renewable energy yields reusing agro-food waste with the lowest environmental impact and an increment of competitiveness of the agricultural sector in the perspective of a circular economy.

Recent updates on the use of agro-food waste for biogas production

Caruso, Marisa Carmela;Braghieri, Ada
;
Capece, Angela;Napolitano, Fabio;Romano, Patrizia;Galgano, Fernanda;Altieri, Giuseppe;Genovese, Francesco
2019-01-01

Abstract

The production of biogas from anaerobic digestion (AD) of residual agro-food biomasses represents an opportunity for alternative production of energy from renewable sources, according to the European Union legislation on renewable energy. This review provides an overview of the various aspects involved in this process with a focus on the best process conditions to be used for AD-based biogas production from residual agro-food biomasses. After a schematic description of the AD phases, the biogas plants with advanced technologies were described, pointing out the strengths and the weaknesses of the different digester technologies and indicating the main parameters and operating conditions to be monitored. Subsequently, a brief analysis of the factors affecting methane yield from manure AD was conducted and the AD of fruit and vegetables waste was examined. Particular attention was given to studies on co-digestion and pre-treatments as strategies to improve biogas yield. Finally, the selection of specific microorganisms and the genetic manipulation of anaerobic bacteria to speed up the AD process was illustrated. The open challenges concern the achievement of the highest renewable energy yields reusing agro-food waste with the lowest environmental impact and an increment of competitiveness of the agricultural sector in the perspective of a circular economy.
2019
File in questo prodotto:
File Dimensione Formato  
Caruso et al., 2019.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 665.12 kB
Formato Adobe PDF
665.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/136618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 55
social impact