Nutritional quality of raw donkey milk (DM) may be impaired during sanitization with the current batch holder pasteurization systems (62.5 degrees C for 30 min). In this paper, we present the preliminary results concerning the effects of high temperature for short time (HTST) protocols using an innovative in continuous low flow rate pasteurization plant (60 dm3/h) on B-vitamins group, antioxidant capacity, lysozyme and beta-lactoglobulin in DM. Lysozyme, beta-lactoglobulin and antioxidant power decreased after the thermal treatments, with characteristics depending on the extent of the heat treatment. The lysozyme content was substantially reduced between 20 and 60%, while the degradation of beta-lactoglobulin was lower (2-22%). No vitamin B1 and B12 were found in raw milk, whereas were detected vitamin B2 (0.17 mu mol/L), nicotinic acid (13.28 mu mol/L), B6 (2.06 mu mol/L) and B9 (0.75 mu mol/L). The heat treatments carried out with the innovative plant ensured vitamin retention, as no significant differences were found against the raw milk (p > 0.05). The preliminary results from this study represent a guidance to the establishment of DM pasteurization standards parameters with the perspective to improve DM nutritional quality.

Effect of continuous flow HTST treatments on donkey milk nutritional quality

Matera A.;Altieri G.;Genovese F.;Perna A. M.;Simonetti A.;Di Renzo G.
2022-01-01

Abstract

Nutritional quality of raw donkey milk (DM) may be impaired during sanitization with the current batch holder pasteurization systems (62.5 degrees C for 30 min). In this paper, we present the preliminary results concerning the effects of high temperature for short time (HTST) protocols using an innovative in continuous low flow rate pasteurization plant (60 dm3/h) on B-vitamins group, antioxidant capacity, lysozyme and beta-lactoglobulin in DM. Lysozyme, beta-lactoglobulin and antioxidant power decreased after the thermal treatments, with characteristics depending on the extent of the heat treatment. The lysozyme content was substantially reduced between 20 and 60%, while the degradation of beta-lactoglobulin was lower (2-22%). No vitamin B1 and B12 were found in raw milk, whereas were detected vitamin B2 (0.17 mu mol/L), nicotinic acid (13.28 mu mol/L), B6 (2.06 mu mol/L) and B9 (0.75 mu mol/L). The heat treatments carried out with the innovative plant ensured vitamin retention, as no significant differences were found against the raw milk (p > 0.05). The preliminary results from this study represent a guidance to the establishment of DM pasteurization standards parameters with the perspective to improve DM nutritional quality.
2022
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0023643821015978-main.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Dominio pubblico
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/156130
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact