In this paper a fault diagnosis approach for robotic manipulators, subject to faults of the joints driving systems, is developed. A model-based diagnostic observer is adopted to detect, isolate and identify failures. Compensation of unknown dynamics, uncertainties and disturbances is achieved through the adoption of a class of neural interpolators, the support vector machines and trained off-line. Interpolation of unknown faults is performed by adopting an on-line neural interpolator based on radial basis functions, whose weights are adaptively tuned on-line. The effectiveness of the approach is experimentally tested on an industrial robot manipulator.
Actuators Fault Diagnosis for Robot Manipulators with Uncertain Model
CACCAVALE, Fabrizio;PIERRI, FRANCESCO;
2009-01-01
Abstract
In this paper a fault diagnosis approach for robotic manipulators, subject to faults of the joints driving systems, is developed. A model-based diagnostic observer is adopted to detect, isolate and identify failures. Compensation of unknown dynamics, uncertainties and disturbances is achieved through the adoption of a class of neural interpolators, the support vector machines and trained off-line. Interpolation of unknown faults is performed by adopting an on-line neural interpolator based on radial basis functions, whose weights are adaptively tuned on-line. The effectiveness of the approach is experimentally tested on an industrial robot manipulator.File | Dimensione | Formato | |
---|---|---|---|
CEP09.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.