This study aims to evaluate and classify the ripening stages of yellow-fleshed kiwifruit by integrating spectral and physicochemical data collected from the pre-harvest phase through 60 days of storage. A portable near-infrared (NIR) spectrometer (900–1700 nm) was used to develop predictive models for soluble solids content (SSC) and firmness (FF), testing multiple preprocessing methods within a Partial Least Squares Regression (PLSR) framework. SNV preprocessing achieved the best predictions for FF (R2P = 0.74, RMSEP = 12.342 ± 0.274 N), while the Raw-PLS model showed optimal performance for SSC (R2P = 0.93, RMSEP = 1.142 ± 0.022°Brix). SSC was more robustly predicted than FF, as reflected by RPD values of 2.6 and 1.7, respectively. For ripening stage classification, an Artificial Neural Network (ANN) outperformed other models, correctly classifying 97.8% of samples (R2 = 0.95, RMSE = 0.08, MAE = 0.03). These results demonstrate the potential of combining NIR spectroscopy with AI techniques for non-destructive quality assessment and accurate ripeness discrimination. The integration of regression and classification models further supports the development of intelligent decision-support systems to optimize harvest timing and postharvest handling.

Portable NIR Spectroscopy Combined with Machine Learning for Kiwi Ripeness Classification: An Approach to Precision Farming

Altieri, Giuseppe;Laveglia, Sabina;Genovese, Francesco;Matera, Attilio;Mininni, Alba Nicoletta;Calabritto, Maria;Di Renzo, Giovanni Carlo
2025-01-01

Abstract

This study aims to evaluate and classify the ripening stages of yellow-fleshed kiwifruit by integrating spectral and physicochemical data collected from the pre-harvest phase through 60 days of storage. A portable near-infrared (NIR) spectrometer (900–1700 nm) was used to develop predictive models for soluble solids content (SSC) and firmness (FF), testing multiple preprocessing methods within a Partial Least Squares Regression (PLSR) framework. SNV preprocessing achieved the best predictions for FF (R2P = 0.74, RMSEP = 12.342 ± 0.274 N), while the Raw-PLS model showed optimal performance for SSC (R2P = 0.93, RMSEP = 1.142 ± 0.022°Brix). SSC was more robustly predicted than FF, as reflected by RPD values of 2.6 and 1.7, respectively. For ripening stage classification, an Artificial Neural Network (ANN) outperformed other models, correctly classifying 97.8% of samples (R2 = 0.95, RMSE = 0.08, MAE = 0.03). These results demonstrate the potential of combining NIR spectroscopy with AI techniques for non-destructive quality assessment and accurate ripeness discrimination. The integration of regression and classification models further supports the development of intelligent decision-support systems to optimize harvest timing and postharvest handling.
2025
File in questo prodotto:
File Dimensione Formato  
applsci-15-06233.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Creative commons
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/199536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact