Multispectral imaging plays a key role in crop monitoring. A major challenge, however, is spectral band misalignment, which can hinder accurate plant health assessment by distorting the calculation of vegetation indices. This study presents a novel approach for short-range calibration of a multispectral camera, utilizing stereo vision for precise geometric correction of acquired images. By using multispectral camera lenses as binocular pairs, the sensor acquisition distance was estimated, and an alignment model was developed for distances ranging from 500 mm to 1500 mm. The approach relied on selecting the red band image as a reference, while the remaining bands were treated as moving images. The stereo camera calibration algorithm estimated the target distance, enabling the correction of band misalignment through previously developed models. The alignment models were applied to assess the health status of baby leaf crops (Lactuca sativa cv. Maverik) by analyzing spectral indices correlated with chlorophyll content. The results showed that the stereo vision approach used for distance estimation achieved high accuracy, with average reprojection errors of approximately 0.013 pixels (4.485 × 10−5 mm). Additionally, the proposed linear model was able to explain reasonably the effect of distance on alignment offsets. The overall performance of the proposed experimental alignment models was satisfactory, with offset errors on the bands less than 3 pixels. Despite the results being not yet sufficiently robust for a fully predictive model of chlorophyll content in plants, the analysis of vegetation indices demonstrated a clear distinction between healthy and unhealthy plants.
Development of a Short-Range Multispectral Camera Calibration Method for Geometric Image Correction and Health Assessment of Baby Crops in Greenhouses
Laveglia, Sabina;Altieri, Giuseppe;Genovese, Francesco;Matera, Attilio;Scarano, Luciano;Di Renzo, Giovanni Carlo
2025-01-01
Abstract
Multispectral imaging plays a key role in crop monitoring. A major challenge, however, is spectral band misalignment, which can hinder accurate plant health assessment by distorting the calculation of vegetation indices. This study presents a novel approach for short-range calibration of a multispectral camera, utilizing stereo vision for precise geometric correction of acquired images. By using multispectral camera lenses as binocular pairs, the sensor acquisition distance was estimated, and an alignment model was developed for distances ranging from 500 mm to 1500 mm. The approach relied on selecting the red band image as a reference, while the remaining bands were treated as moving images. The stereo camera calibration algorithm estimated the target distance, enabling the correction of band misalignment through previously developed models. The alignment models were applied to assess the health status of baby leaf crops (Lactuca sativa cv. Maverik) by analyzing spectral indices correlated with chlorophyll content. The results showed that the stereo vision approach used for distance estimation achieved high accuracy, with average reprojection errors of approximately 0.013 pixels (4.485 × 10−5 mm). Additionally, the proposed linear model was able to explain reasonably the effect of distance on alignment offsets. The overall performance of the proposed experimental alignment models was satisfactory, with offset errors on the bands less than 3 pixels. Despite the results being not yet sufficiently robust for a fully predictive model of chlorophyll content in plants, the analysis of vegetation indices demonstrated a clear distinction between healthy and unhealthy plants.File | Dimensione | Formato | |
---|---|---|---|
applsci-15-02893.pdf
accesso aperto
Tipologia:
Pdf editoriale
Licenza:
Creative commons
Dimensione
4.96 MB
Formato
Adobe PDF
|
4.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.