This paper deals with the problem of fault diagnosis (FD) for a class of nonlinear systems. The scheme is based on a discrete-time diagnostic observer that computes a prediction of the system’s state. Compensation of the fault effect on the state prediction is achieved via an adaptive discrete-time approach, based on a parametric model of the faults. A stability proof is developed to prove the global exponential stability of the state estimates. A solution for fault isolation and identification is also proposed, based on a postfault analysis. The proposed FD approach is applied and experimentally tested on a conventional industrial robot manipulator

Adaptive observer for fault diagnosis in nonlinear discrete-time systems

CACCAVALE, Fabrizio;PIERRI, FRANCESCO;
2008-01-01

Abstract

This paper deals with the problem of fault diagnosis (FD) for a class of nonlinear systems. The scheme is based on a discrete-time diagnostic observer that computes a prediction of the system’s state. Compensation of the fault effect on the state prediction is achieved via an adaptive discrete-time approach, based on a parametric model of the faults. A stability proof is developed to prove the global exponential stability of the state estimates. A solution for fault isolation and identification is also proposed, based on a postfault analysis. The proposed FD approach is applied and experimentally tested on a conventional industrial robot manipulator
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/17619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 48
social impact