This review outlines the recent advances in the knowledge on aerobic and respiratory growth of lactic acid bacteria, focusing on the features of respiration-competent lactobacilli. The species of the genus Lactobacillus have been traditionally classified as oxygen-tolerant anaerobes, but it has been demonstrated that several strains are able to use oxygen as a substrate in reactions mediated by flavin oxidases and, in some cases, to synthesize a minimal respiratory chain. The occurrence of genes related to aerobic and respiratory metabolism and to oxidative stress response apparently correlates with the taxonomic position of lactobacilli. Members of the ecologically versatile Lactobacillus casei, L. plantarum and L. sakei groups are apparently best equipped to deal with aerobic/respiratory growth. The shift from anaerobic growth to aerobic (oxygen) and/or respiratory promoting (oxygen, exogenous haem and menaquinone) conditions offers physiological advantages and affects the pattern of metabolite production in several species. Even if this does not result in dramatic increases in biomass production and growth rate, cells grown in these conditions have improved tolerance to heat and oxidative stresses. An overview of benefits and of the potential applications of Lactobacillus cultures grown under aerobic or respiratory conditions is also discussed.

Aerobic metabolism in the genus Lactobacillus: Impact on stress response and potential applications in the food industry

Zotta, T;PARENTE, Eugenio;RICCIARDI, Annamaria
2017-01-01

Abstract

This review outlines the recent advances in the knowledge on aerobic and respiratory growth of lactic acid bacteria, focusing on the features of respiration-competent lactobacilli. The species of the genus Lactobacillus have been traditionally classified as oxygen-tolerant anaerobes, but it has been demonstrated that several strains are able to use oxygen as a substrate in reactions mediated by flavin oxidases and, in some cases, to synthesize a minimal respiratory chain. The occurrence of genes related to aerobic and respiratory metabolism and to oxidative stress response apparently correlates with the taxonomic position of lactobacilli. Members of the ecologically versatile Lactobacillus casei, L. plantarum and L. sakei groups are apparently best equipped to deal with aerobic/respiratory growth. The shift from anaerobic growth to aerobic (oxygen) and/or respiratory promoting (oxygen, exogenous haem and menaquinone) conditions offers physiological advantages and affects the pattern of metabolite production in several species. Even if this does not result in dramatic increases in biomass production and growth rate, cells grown in these conditions have improved tolerance to heat and oxidative stresses. An overview of benefits and of the potential applications of Lactobacillus cultures grown under aerobic or respiratory conditions is also discussed.
2017
File in questo prodotto:
File Dimensione Formato  
Zotta_et_al-2017-Journal_of_Applied_Microbiology.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 829.26 kB
Formato Adobe PDF
829.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/125419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 138
  • ???jsp.display-item.citation.isi??? 131
social impact