Using tools from Lorentzian geometry (arising 1 from the presence of the Fefferman metric) we prove a Takahashi type theorem (for a class of pseudohermitian immersions covered by connection-preserving equivariant immersions among the total spaces of the canonical circle bundles) thus relating the geometry of a pseudohermitian immersion from a strictly pseudoconvex CR manifold M into an odd dimensional sphere, to the spectrum of the sublaplacian on M.
CR immersions and Lorentzian geometry Part II: A Takahashi type theorem
DRAGOMIR, Sorin;
2013-01-01
Abstract
Using tools from Lorentzian geometry (arising 1 from the presence of the Fefferman metric) we prove a Takahashi type theorem (for a class of pseudohermitian immersions covered by connection-preserving equivariant immersions among the total spaces of the canonical circle bundles) thus relating the geometry of a pseudohermitian immersion from a strictly pseudoconvex CR manifold M into an odd dimensional sphere, to the spectrum of the sublaplacian on M.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1007_s11587-013-0158-4.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
531.69 kB
Formato
Adobe PDF
|
531.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.