Using tools from Lorentzian geometry (arising 1 from the presence of the Fefferman metric) we prove a Takahashi type theorem (for a class of pseudohermitian immersions covered by connection-preserving equivariant immersions among the total spaces of the canonical circle bundles) thus relating the geometry of a pseudohermitian immersion from a strictly pseudoconvex CR manifold M into an odd dimensional sphere, to the spectrum of the sublaplacian on M.

CR immersions and Lorentzian geometry Part II: A Takahashi type theorem

DRAGOMIR, Sorin;
2013-01-01

Abstract

Using tools from Lorentzian geometry (arising 1 from the presence of the Fefferman metric) we prove a Takahashi type theorem (for a class of pseudohermitian immersions covered by connection-preserving equivariant immersions among the total spaces of the canonical circle bundles) thus relating the geometry of a pseudohermitian immersion from a strictly pseudoconvex CR manifold M into an odd dimensional sphere, to the spectrum of the sublaplacian on M.
2013
File in questo prodotto:
File Dimensione Formato  
10.1007_s11587-013-0158-4.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 531.69 kB
Formato Adobe PDF
531.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/50839
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact