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Abstract Using tools from Lorentzian geometry (arising from the presence of the
Fefferman metric) we prove a Takahashi type theorem (for a class of pseudohermitian
immersions covered by connection-preserving equivariant immersions among the total
spaces of the canonical circle bundles) thus relating the geometry of a pseudohermitian
immersion from a strictly pseudoconvex CR manifold M into an odd dimensional
sphere, to the spectrum of the sublaplacian on M .
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5 Introduction and abridged statement of results

This is the second part of the paper [4]. Section 6 is devoted to recalling the essen-
tials on the Fefferman metric (cf. also [3]). In Sect. 7 we study the geometry of the
second fundamental form of a pseudohermitian immersion φ : M → A covered by
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a connection-preserving equivariant immersion � : C(M)→ C(A). The main result
in Sect. 7 is Theorem 2 admitting the following

Corollary 5 Let φ : M → S2N+1 be a pseudohermitian immersion of (M, θ) into
(S2N+1,�). Let �̂b be the sublaplacian of (M, θ̂ = λθ) where λ = � ◦ φ and
(i/2) j∗N+1(∂− ∂)|Z |2 = ��. If there is a connection-preserving equivariant immer-

sion � : C(M)→ C(S2N+1) covering φ then u j = Z j ◦ jN+1 ◦φ ∈ Eigen(�̂b , 2n)

i.e. each u j is an eigenfunction of the sublaplacian �̂b corresponding to the eigen-
value 2n. Conversely let M be a strictly pseudoconvex CR manifold of CR dimen-
sion n and φ : M → C

N+1 a smooth map covered by an isometric immersion
� : C(M)→ C

N+1×C
∗ of (C(M), F

θ̂
) into (Cn+1×C

∗, G) for some contact form

θ̂ on M with G
θ̂

positive definite. Let u j = Z j ◦ φ and f = ζ ◦�. If

�̂bu j = μ u j , �̂ f = −2 f, 0 ≤ j ≤ N ,

for some μ ∈ R and | f | = 1 everywhere on C(M) then

μ > 0, φ(M) ⊂ S2N+1(
√

2n/μ). (124)

Corollary 5 bears a close analogy to a result by Takahashi [14], relating the geometry
of minimal immersions among Riemannian manifolds to the spectrum of the Laplace–
Beltrami operator of the given submanifold. In the context of our Theorem 2 and
Corollary 5 the role of the Laplacian is played by a second order subelliptic operator
appearing naturally on a strictly pseudoconvex CR manifold, the sublaplacian �b.

6 Fefferman’s metric

A complex valued p-form ω on M is a (p, 0)-form if T0,1(M) �ω = 0. Let
�p,0(M) ⊂ �p T ∗(M) ⊗ C be the relevant subbundle. If M has CR dimension
n then the top degree (p, 0)-forms are the sections of �n+1,0(M) (a complex line
bundle over M , the canonical bundle of (M, T1,0(M))). There is a canonical action
of the multiplicative positive reals GL+(1, R) = (0,+∞) on �n+1,0(M)\(0). Let
C(M) = [

�n+1,0(M)\(0)
]
/GL+(1, R) be the quotient space and π : C(M) → M

the projection, so that C(M) is the total space of a principal S1-bundle over M (the
canonical circle bundle). Let S2[C(M)] and Lor[C(M)]denote, respectively, the space
of all symmetric (0, 2)-tensor fields and the set of all Lorentzian metrics on C(M).
We endow S2[C(M)] with the distance function

d∞gM
(h, h′) = sup

c∈C(M)

[
trace(h̃c − h̃′c)2

]1/2
(125)

where gM is a fixed Riemannian metric on C(M) while h̃, h̃′ are the (1, 1)-tensor
fields determined by h, h′ ∈ S2[C(M)] with respect to gM e.g.

gM (h̃(X), Y ) = h(X, Y ), X, Y ∈ X(C(M)).
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Then Lor[C(M)] is an open set of the metric space (S2[C(M)], d∞gM
) (cf., e.g.

Mounoud [11], p. 49). When M is strictly pseudoconvex for each contact form θ (with
Gθ positive definite) there is a Lorentzian metric Lθ ∈ Lor[C(M)] (the Fefferman
metric of (M, θ)) given by

Lθ = π∗G̃θ + 2(π∗θ)� σ (126)

where G̃θ is the extension of Gθ to a symmetric degenerate (0, 2)-tensor field on M
given by G̃θ = Gθ on H(M)⊗ H(M) and G̃θ (X, T ) = 0 for any X ∈ X(M) while
� denotes the symmetric tensor product e.g. α � β = (1/2){α ⊗ β + β ⊗ α} for any
1-forms α, β. Also σ ∈ C∞(T ∗(C(M))) is (cf. [7]) a canonical connection 1-form in
the principal bundle S1 → C(M)→ M given (cf. [10]) by

σ = 1

n + 2

{
dγ + π∗

(
i ωα

α − i

2
gαβ dgαβ −

ρ

4(n + 1)
θ

)}
. (127)

Here γ is a local fibre coordinate on C(M)

γ : π−1(U )→ R, γ (c) = arg

(
λ

|λ|
)

, c ∈ π−1(U ),

with respect to a local frame {Tα : 1 ≤ α ≤ n} of T1,0(M) defined on the open set
U ⊂ M , i.e. c is represented as

c =
[
λ

(
θ ∧ θ1 ∧ · · · ∧ θn

)

x

]
, λ ∈ C\{0}, x ∈ U.

Here {θα : 1 ≤ α ≤ n} is an adapted local coframe (i.e. frame of T1,0(M)∗) determined
by

θα(Tβ) = δα
β , θα(Tβ) = 0, θα(T ) = 0,

and arg : S1 → [0, 2π). For each ω ∈ �n+1,0(M)\(0) we denote by [ω] ∈ C(M)

the class of ω (mod GL+(1, R)). Also ρ is the pseudohemitian scalar curvature of
(M, θ). With respect to {Tα : 1 ≤ α ≤ n} we set

gαβ = Lθ (Tα, Tβ), [gαβ ] = [gαβ ]−1,

∇Tβ = ωβ
α ⊗ Tα , ωβ

α ∈ �1(U ),

Rαβ = Rα
γ

γβ , Rα
δ
λσ Tδ = R∇(Tλ, Tσ )Tα,

ρ = Rα
α , Rα

γ = gγ β Rαβ.

Here R∇ is the curvature tensor field of the Tanaka–Webster connection ∇ of (M, θ).
The restricted conformal class

[Fθ ] = {eu◦π Fθ : u ∈ C∞(M, R)}

is a CR invariant (by a result of Lee [10], or Theorem 2.3 in [3], p. 128).

123

Author's personal copy



S. Dragomir, A. Minor

Let X↑ ∈ X(C(M)) denote the horizontal lift of X ∈ X(M) with respect to the
connection 1-form σ , i.e. X↑ ∈ Ker(σ ) and (dcπ)X↑c = Xπ(c) for any c ∈ C(M). Let
S be the tangent to the S1-action i.e. the tangent vector field S ∈ X(C(M)) locally
given by S = [(n + 2)/2] ∂/∂γ . Then T ↑ − S is timelike i.e. (C(M), Fθ ) is time
oriented by T ↑ − S. Hence (C(M), Fθ ) is a space-time. However when M is compact
(C(M), Fθ ) is not chronological (cf. Proposition 2.6 in [2], p. 23). Note that S is null
i.e. Fθ (S, S) = 0. Hence π : C(M) → M is not a semi-Riemannian submersion
(its fibres are degenerate) (cf. also [13], p. 212). Nevertheless we may (in the spirit
of [12]) relate the Levi–Civita connection ∇Fθ of (C(M), Fθ ) to the Tanaka–Webster
connection ∇ of (M, θ).

Lemma 7 For any X, Y ∈ C∞(H(M))

Fθ (X↑, Y↑) = gθ (X, Y ) ◦ π, Fθ (X↑, T ↑) = 0, Fθ (T
↑, T ↑) = 0. (128)

Moreover

∇Fθ

X↑Y
↑ = (∇X Y )↑ − [(dθ)(X, Y ) ◦ π ] T ↑ (129)

+
[
σ([X↑, Y↑])− 2 A(X, Y ) ◦ π

]
S,

∇Fθ

X↑T ↑ = (τ (X)+M(X))↑ , (130)

∇Fθ

T ↑X↑ = (∇T X +M(X))↑ + 4 (dσ)(X↑, T ↑) S, (131)

∇Fθ

X↑ S = ∇Fθ

S X↑ = 1

2
(J X)↑, (132)

∇Fθ

T ↑T ↑ = 2 V ↑, ∇Fθ

S S = ∇Fθ

S T ↑ = ∇Fθ

T ↑ S = 0, (133)

where M : H(M)→ H(M) and V ∈ H(M) are, respectively, the bundle morphism
and the tangent vector field determined by

Gθ (M(X), Y ) ◦ π = (dσ)(X↑, Y↑), Gθ (V, X) ◦ π = (dσ)(T ↑ , X↑), (134)

for any X, Y ∈ H(M). Locally M and V are given by

Mα
β = i

2(n + 2)

{
Rα

β − ρ

2(n + 1)
δβ
α

}
, Mα

β = 0, Mα
0 = 0, (135)
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V α = gαβ Vβ , Vβ =
1

2(n + 2)

{
1

4(n + 1)
ρβ + i W α

αβ

}
. (136)

Proof The identities (128) follow from (126). Next for any tangent vector fields
X̃ , Ỹ , Z̃ ∈ X(C(M))

2Fθ

(
∇Fθ

X̃
Ỹ , Z̃

)
= X̃

(
Fθ (Ỹ , Z̃)

)
+ Ỹ

(
Fθ (Z̃ , X̃)

)
− Z̃

(
Fθ (X̃ , Ỹ )

)
(137)

+ Fθ

([
X̃ , Ỹ

]
, Z̃

)
+ Fθ

(
Ỹ ,

[
Z̃ , X̃

])
− Fθ

([
Ỹ , Z̃

]
, X̃

)
.

Let us set X̃ = X↑, Ỹ = Y↑ and Z̃ = Z↑ in (137) for any X, Y, Z ∈ H(M). The
vertical distribution Ker(dπ) is spanned by S. Thus [by (126), (127)] Ker(dπ) and
H(M)↑ ⊂ Ker(σ ) are orthogonal (with respect to Fθ ). On the other hand (by [8,9],
vol. I, p. 65) [X, Y ]↑ is the horizontal component of

[
X↑, Y↑

]
hence

Fθ

([
X↑, Y↑

]
, Z↑

)
= Fθ

(
[X, Y ]↑ , Z↑

)
= (π∗G̃θ )

(
[X, Y ]↑, Z↑

)

= G̃θ ([X, Y ] , Z) ◦ π = Gθ (�H [X, Y ] , Z) ◦ π = gθ ([X, Y ] , Z) ◦ π.

Here �H : T (M)→ H(M) is the projection (associated to the decomposition (3) in
Part I of this paper). Then (137) yields

2Fθ

(
∇Fθ

X↑Y
↑ , Z↑

)
= X↑ (gθ (Y, Z) ◦ π)+ Y↑ (gθ (Z , X) ◦ π)−Z↑ (gθ (X, Y ) ◦ π)

+ gθ ([X, Y ] , Z) ◦ π + gθ (Y , [Z , X ]) ◦ π

− gθ ([Y, Z ] , X) ◦ π

= 2 gθ

(∇gθ

X Y , Z
) ◦ π

where ∇gθ is the Levi–Civita connection of the Riemannian manifold. We recall [cf.
(1.61) in [3], p. 37]

∇gθ = ∇ − (dθ + A)⊗ T + τ ⊗ θ + 2(θ � ϕ). (138)

Thus �H∇gθ

X Y = ∇X Y for any X, Y ∈ H(M). Also note that

T (C(M)) = Ker(σ )⊕ Ker(dπ) = H(M)↑ ⊕ (RT ↑)⊕ (RS). (139)

Consequently

Fθ

(
∇Fθ

X↑Y
↑ , Z↑

)
= Gθ (∇X Y , Z) ◦ π = Fθ ((∇X Y )↑ , Z↑)

yields

∇Fθ

X↑Y
↑ = (∇X Y )↑ + a T ↑ + b S (140)
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for some a, b ∈ C∞(C(M)) (depending on X and Y ). Note that (by π∗(S) = 0)

Fθ (T
↑, S) = 2

(
(π∗θ)� σ

)
(T ↑ , S) = σ(S) = 1/2.

Then [by taking the inner product of (140) with S]

a = 2Fθ

(
∇Fθ

X↑Y
↑ , S

)
=

[by (137) for X̃ = X↑, Ỹ = Y↑ and Z̃ = S]

= X↑
(

Fθ (Y
↑, S)

)
+ Y↑

(
Fθ (S , X↑)

)
− S

(
Fθ (X↑ , Y↑)

)

+ Fθ

([
X↑, Y↑

]
, S

)
+ Fθ

(
Y↑ ,

[
S, X↑

])
− Fθ

([
Y↑, S

]
, X↑

)
=

[by (128) and [X↑ , S] = 0 (cf. [8,9], vol. I, p. 79)]

= −S(gθ (X, Y ) ◦ π)+ Fθ

([
X↑, Y↑

]
, S

)
= (byπ∗(S) = 0)

= (
π∗θ

)
([X↑, Y↑])σ (S) = (1/2) θ([X, Y ]) ◦ π

that is

a = −(dθ)(X, Y ) ◦ π. (141)

Similarly (by taking the inner product of (140) with T ↑)

b = 2Fθ (∇Fθ

X↑Y
↑ , T ↑) =

(by (137) with X̃ = X↑, Ỹ = Y↑ and Z̃ = T ↑)

= X↑
(

Fθ (Y
↑ , T ↑)

)
+ Y↑

(
Fθ (T

↑ , X↑)
)
− T ↑

(
Fθ (X↑ , Y↑)

)

+Fθ

([
X↑, Y↑

]
, T ↑

)
+ Fθ

(
Y↑ ,

[
T ↑, X↑

])
− Fθ

([
Y↑, T ↑

]
, X↑

)
.

On the other hand (as θ(X) = θ(Y ) = 0)

Fθ (X↑ , T ↑) = (π∗G̃θ )(X↑ , T ↑) = G̃θ (X, T ) ◦ π = 0,

Fθ ([X↑, Y↑] , T ↑) = σ([X↑, Y↑]),
Fθ ([X↑, T ↑] , Y↑) = G̃θ ([X, T ], Y ) ◦ π,
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hence

b = σ([X↑, Y↑])+ {−T (gθ (X, Y ))+ gθ ([T, X ], Y )+ gθ ([T, Y ], X)} ◦ π.

(142)

Also

2 gθ

(∇gθ

X Y, T
) = X (gθ (Y, T ))+ Y (gθ (T, X))− T (gθ (X, Y ))+ gθ ([X, Y ], T )

+gθ (Y, [T, X ])− gθ ([Y, T ], X)

= −T (gθ (X, Y ))+ gθ ([T, X ], Y )+ gθ ([T, Y ], X)+ θ([X, Y ])

leads to the identity

− T (gθ (X, Y ))+ gθ ([T, X ], Y )+ gθ ([T, Y ], X) (143)

= 2 θ
(∇gθ

X Y
)− θ([X, Y ]).

Let us substitute from (143) into (142) so that to yield

b = 2 θ
(∇gθ

X Y
)− θ([X, Y ])+ σ([X↑, Y↑])

or (by θ
(∇gθ

X Y
) = −(dθ)(X, Y )− A(X, Y ))

b = σ([X↑, Y↑])− 2 A(X, Y ). (144)

Finally we may substitute from (141) and (144) into (140) so that to yield

∇Fθ

X↑Y
↑ = (∇X Y )↑ − [(dθ)(X, Y ) ◦ π ] T ↑ +

[
σ([X↑, Y↑])− 2 A(X, Y ) ◦ π

]
S

for any X, Y ∈ H(M). This proves (129). To prove (130) let us set X̃ = X↑, Ỹ = T ↑
and Z̃ = Z↑ in (137) with X, Z ∈ H(M)

2Fθ

(
∇Fθ

X↑T ↑ , Z↑
)
= X↑

(
Fθ (T

↑ , Z↑)
)
+ T ↑

(
Fθ (X↑ , Z↑)

)

− Z↑
(

Fθ (X↑ , T ↑)
)
+ Fθ

([
X↑, T ↑

]
, Z↑

)

+ Fθ

(
T ↑ ,

[
Z↑, X↑

])
− Fθ

([
T ↑, Z↑

]
, X↑

)

or

2Fθ

(
∇Fθ

X↑T ↑ , Z↑
)
= −σ([X↑, Z↑])+ {T (gθ (X, Z)) (145)

+ gθ ([X, T ], Z)+ gθ ([Z , T ], X)} ◦ π.

123

Author's personal copy



S. Dragomir, A. Minor

On the other hand

2 gθ

(∇gθ

X T, Z
) = X (gθ (T, Z))+ T (gθ (X, Z))− Z(gθ (X, T ))+ gθ ([X, T ], Z)

+ gθ (T, [Z , X ])− gθ ([T, Z ], X)

= T (gθ (X, Z))+ gθ ([X, T ], Z)+ gθ ([Z , T ], X)− θ([X, Z ])

yields the identity

T (gθ (X, Z))+ gθ ([X, T ], Z)+ gθ ([Z , T ], X) = 2 gθ

(∇gθ

X T, Z
)+ θ([X, Z ]).

(146)

Substitution from (146) into (145) gives

2Fθ

(
∇Fθ

X↑T ↑ , Z↑
)
= {

2 gθ

(∇gθ

X T, Z
)+ θ([X, Z ])} ◦ π − σ([X↑, Z↑])

hence [by ∇gθ

X T = τ(X)+ J (X)]

2Fθ

(
∇Fθ

X↑T ↑ , Z↑
)
= 2 A(X, Z) ◦ π − σ([X↑, Z↑]). (147)

Next one has

∇Fθ

X↑T ↑ = W↑ + λ T ↑ + μ S (148)

for some W ∈ H(M) and λ,μ ∈ C∞(C(M)) (depending on X ). Taking the inner
product of (148) with Z↑ leads [by (147)] to

W = τ(X)+M(X) (149)

where M : H(M)→ H(M) is given by (134). Taking the inner product of (148) with
S leads [by (128) and by (137) for X̃ = X↑, Ỹ = T ↑ and Z̃ = S] to

λ = 2Fθ

(
∇X↑T ↑ , S

)
= Fθ ([X↑, T ↑], S) = 1

2
θ([X, T ])

i.e. λ = 0 (as [X, T ] ∈ H(M)). Similarly

μ = 2Fθ (∇X↑T ↑, T ↑) = 0
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and (148), (149) yield (130). To prove (131) let us set X̃ = T ↑, Ỹ = Y↑ and Z̃ = Z↑
in (137)

2Fθ

(
∇Fθ

T ↑Y
↑, Z↑

)
= T ↑

(
Fθ (Y

↑, Z↑)
)
+ Fθ

([
T ↑, Y↑

]
, Z↑

)

+ Fθ

(
Y↑,

[
Z↑, T ↑

])
−Fθ

([
Y↑, Z↑

]
, T ↑

)

= {T (gθ (Y, Z))+ gθ ([T, Y ], Z)+ gθ ([Z , T ], Y )} ◦ π

− σ([Y↑, Z↑])

and substitution from

2 gθ (∇gθ

T Y , Z)+ θ([Y, Z ]) = T (gθ (Y, Z))+ gθ ([T, Y ], Z)+ gθ (Y, [Z , T ])

furnishes

2Fθ

(
∇Fθ

T ↑Y
↑ , Z↑

)
= 2 gθ (∇gθ

T Y , Z)+ θ([Y, Z ])− σ([Y↑, Z↑])

or (by ∇gθ

T Y = ∇T Y + J (Y ))

Fθ

(
∇Fθ

T ↑Y
↑ , Z↑

)
= gθ (∇T Y , Z)+ (dσ)(Y↑ , Z↑). (150)

Consequently

∇Fθ

T ↑Y
↑ = (∇T Y +M(Y ))↑ + α T ↑ + β S

where [by (137) for X̃ = T ↑, Ỹ = Y↑ and Z̃ = S, respectively for Z̃ = T ↑]

α = 2Fθ

(
∇Fθ

T ↑Y
↑ , S

)
= Fθ

([
T ↑, Y↑

]
, S

)
= 1

2
θ([T, Y ]) = 0,

β = 2Fθ

(
∇Fθ

T ↑Y
↑ , T ↑

)
= 2Fθ

([
T ↑, Y↑

]
, T ↑

)

= 2 σ([T ↑, Y↑]) = −4 (dσ)(T ↑, Y↑),

thus leading to (131). To prove (132) we set X̃ = X↑, Ỹ = S and Z̃ = Z↑ in (137)

2 Fθ

(
∇Fθ

X↑ S , Z↑
)
= S

(
Fθ (X↑ , Z↑)

)
+ Fθ

(
S ,

[
Z↑, X↑

])

= S (gθ (X, Z) ◦ π)+ 1

2
θ([Z , X ]) ◦ π

and obtain

2 Fθ

(
∇Fθ

X↑ S , Z↑
)
= (dθ)(X, Z) (151)
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so that

∇Fθ

X↑ S = W↑ + λT ↑ + μS

for some W ∈ H(M) and λ,μ ∈ C∞(C(M)). Taking the inner product with Z↑ leads
to [by (151)] W = (1/2) J X . Also [by ∇Fθ Fθ = 0 and (130)]

λ = 2 Fθ

(
∇Fθ

X↑ S, S
)
= 0,

μ = 2 Fθ

(
∇Fθ

X↑ S, T ↑
)
= 2

{
X↑

(
Fθ (S, T ↑)

)
− Fθ

(
S, ∇Fθ

X↑T ↑
)}

= −2 Fθ

(
S, (τ (X)+M(X))↑

)
= 0,

and (132) is proved. Finally let us prove (133). To this end we set X̃ = Ỹ = T ↑ and
Z̃ = Z↑ in (137)

Fθ

(
∇Fθ

T ↑T ↑, Z↑
)
= Fθ

(
T ↑ ,

[
Z↑, T ↑

])
= σ([Z↑ , T ↑])

or

Fθ

(
∇Fθ

T ↑T ↑ , Z↑
)
= 2 (dσ)(T ↑, Z↑) (152)

so that

∇Fθ

T ↑T ↑ = 2 V ↑ + λ T ↑ + μ S

where V ∈ H(M) is given by the second of the identities (134) and [by (137)]

λ = 2 Fθ

(
∇Fθ

T ↑T ↑ , S
)
= 0, μ = 2 Fθ

(
∇Fθ

T ↑T ↑ , T ↑
)
= 0,

and the first of the formulae (133) is proved. The second identity in (133) is an imme-
diate consequence of (137), ∇Fθ Fθ = 0, and (132). Moreover we set

σ0 = i ωα
α − i

2
gαβ dgαβ −

ρ

4(n + 1)
θ

so that σ = [1/(n + 2)] {dγ + π∗σ0}. Note that

dgαβ ∧ dgαβ = 0

as a consequence of ∇gθ = 0. Then

dσ0 = i dωα
α − 1

4(n + 1)
d(ρθ).
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At this point we need to recall (1.90) in [3], p. 55

�α
β = Rα

β
λμ θλ ∧ θμ +W β

αλ θλ ∧ θ −W β

αλ
θλ ∧ θ (153)

where

�α
β = dωα

β − ωα
γ ∧ ωγ

β − 2i θα ∧ τβ + 2i τα ∧ θβ

while W β
αλ and W β

αλ
are certain contractions of covariant derivatives of Aα

β
. Here we

set τ(Tβ) = Aα

β
Tα . Let us contract α and β in (153). As A is symmetric

θα ∧ τα = Aαβ θα ∧ θβ = 0, θα ∧ θα = Aαβ θα ∧ θβ = 0.

Also ωα
β ∧ωβ

α = 0 hence �α
α = dωα

α . Next [by (1.99) in [3], p. 56] Rλμ = Rα
α

λμ

hence

dωα
α = Rλμ θλ ∧ θμ +

(
W α

αλθ
λ −W α

αλ
θλ

)
∧ θ. (154)

Then by (134)

Gθ (M(X), Y ) = 1

n + 2

{
i Rαβ θα ∧ θβ − ρ

4(n + 1)
dθ

}
(X, Y ), (155)

Gθ (V, X) = 1

2(n + 2)

{
dρ

4(n + 1)
− i

(
W α

αλ θλ −W α

αλ
θλ

)}
(X), (156)

for any X, Y ∈ H(M). Finally (155), (156) and dθ = 2i gαβ θα ∧ θβ yield (135),
(136). The proof of Lemma 7 is complete. ��

7 CR immersions covered by equivariant connection-preserving maps

Let M and A be strictly pseudoconvex CR manifolds of CR dimensions n and N =
n+ k. Let θ and � be contact forms on M and A such that the Levi forms Gθ and G�

are positive definite. Let φ : M → A be a pseudohermitian immersion of (M, θ) into
(A,�). Let C(M) and C(A) be the canonical circle bundles. Let σ ∈ C∞(T ∗(C(M)))

and σA ∈ C∞(T ∗(C(A))) be the connection 1-forms associated to θ and �. Precisely
σ is given by (127) and

σA = 1

N + 2

{
d� + π∗A

(
i� j

j − i

2
G jk dG jk −

ρA

4(N + 1)
�

)}
.

Here � is a local fibre coordinate on C(A). Also G jk and � j
k are the local coefficients

of the Levi form G� and the connection 1-forms of the Tanaka–Webster connection
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of (A,�) i.e.

G jk = G�(W j , Wk), ∇ AW j = � j
k Wk ,

with respect to a local frame {W j : 1 ≤ j ≤ N } of T1,0(A). A smooth map � :
C(M) → C(A) is equivariant if �(a c) = a �(c) for any a ∈ S1 and c ∈ C(M).
Also � is connection-preserving if

�∗σA = σ. (157)

Through Sect. 5 we assume that there is a connection-preserving equivariant C∞
immersion � : C(M)→ C(A) covering φ : M → A i.e. such that

S1 → C(M)
�−→ C(A) ← S1

↓ π ↓ πA

M
φ−→ A

(158)

is a commutative diagram. Then the pair (�, φ) is a morphism of principal circle
bundles.

Lemma 8 Let S ∈ X(C(M)) and SA ∈ X(C(A)) be the tangents to the S1-actions.
Then

i) �∗S = SA and �∗� ⊂ �A,
ii) �∗X↑ = (φ∗X)↑ for any X ∈ X(M),
iii) ν(�) = ν(φ)↑,
iv) � is an isometric immersion among the Lorentzian manifolds (C(M), Fθ ) and

(C(A), F�).

Here ν(�)→ C(M) is the normal bundle of the immersion �. Also � ⊂ T (C(M))

and �A ⊂ T (C(A)) are the horizontal distributions associated to the connection
1-forms σ and σA.

Proof If c ∈ C(M) let ac : R → C(M) be the curve given by ac(t) = eit c for any
t ∈ R. Then Sc = (dac/dt)t=0. As � is equivariant � maps ac into a�(c) so that
(dc�)Sc = SA,�(c) for any c ∈ C(M). Next

� = Ker(σ ), �A = Ker(σA),

hence [by (157)] �∗ maps � into �A. To prove (ii) let X ∈ X(M). Then [by the
commutativity of the diagram (158)]

�∗X↑ − (φ∗X)↑ ∈ �A ∩ Ker(dπA) = (0).
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To prove (iii) we consider the decompositions

T�(c)(C(A)) = [(dc�) Tc(C(M))]⊕ ν(�)c , c ∈ C(M), (159)

T (C(M)) = H(M)↑ ⊕ RT ↑ ⊕ RS. (160)

Let ξ ∈ ν(φ). Then for any X ∈ H(M)

F�(�∗X↑ , ξ↑) = F�((φ∗X)↑ , ξ↑) = g�(φ∗X , ξ) ◦ πA = 0,

F�(�∗T ↑ , ξ↑) = F�((φ∗T )↑ , ξ↑) = F�(T ↑A , ξ↑) = G̃θ (TA , ξ) = 0,

F�(�∗S , ξ↑) = F�(SA , ξ↑) = 2
[
(π∗A�)� σA

]
(SA , ξ↑)

= �(ξ)σA(SA) = 2 g�(TA , ξ) = 0.

Therefore [by (159), (160)] ξ↑ ∈ ν(�), i.e. ν(φ)↑ ⊆ ν(�). Equality holds because
both ν(φ) and ν(�) have rank 2k. Finally let us note that φ∗G̃� = G̃θ . This follows
from (14) in Part I of this paper and

(φ∗G̃�)(T, X) = G̃�(TA , φ∗X) = 0 = G̃θ (T, X)

for any X ∈ X(M). Hence [by (126), (157), and (158)]

�∗F� = �∗
{
π∗AG̃� + 2(π∗A�)� σA

}
= Fθ .

Lemma 8 is proved. ��
Let gM and gA be fixed Riemannian metrics on C(M) and C(A) respectively. Let

us endow Lor[C(M)] and Lor[C(A)] with the distance functions d∞gM
and d∞gA

[given
by (125)]. Then

Proposition 6 Let M and A be two compact strictly pseudoconvex CR manifolds. Then
for any connection-preserving equivariant immersion � : C(M) → C(A) covering
the pseudohermitian immersion φ : M → A the map �∗ : S2[C(A)] → S2[C(M)]
is a continuous surjection of [F�] onto [Fθ ].

Proof For each Fefferman metric H = eV ◦πA F� on C(A) (with V ∈ C∞(A, R)) one
has �∗H = ev◦π Fθ where v = V ◦φ ∈ C∞(M, R). Hence �∗ [F�] ⊆ [Fθ ]. Equality
holds because each C∞ function on φ(M) extends smoothly to a function on A. Let
{X j : 1 ≤ j ≤ 2N + 2} be a local gA-orthonormal (i.e. gA(X j , Xk) = δ jk) frame of
T (C(A)) defined on the open subset U ⊂ C(A). Then

H̃(X j ) =
2N+2∑

k=1

eV ◦πA F�(X j , Xk)Xk
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on U . In particular

trace [(H̃)2] = e2(V ◦πA)‖F�‖2 (161)

where the (pointwise) norm of F� is taken with respect to gA. Consequently by (161)

d∞gA
(H1 , H2) = sup

c∈C(A)

∣
∣
∣eV1(πA(c)) − eV2(πA(c))

∣
∣
∣ ‖F�‖c

for any Hi = eVi◦πA F� and i ∈ {1, 2}. Let {Hν}ν≥1 ⊂ [F�] be a sequence of
Fefferman metrics such that Hν → H as ν →∞ for some H ∈ [F�]. Then for any
ε > 0 there is νε ≥ 1 such that

∣
∣
∣eVν◦πA − eV ◦πA

∣
∣
∣ ‖F�‖ < ε

for any ν ≥ νε everywhere on C(A). Here Hν = eVν◦πA F� for some Vν ∈ C∞(A, R).
We claim that ‖F�‖ is bounded away from zero. Indeed as A is compact C(A) is
compact as well hence infc∈C(A) ‖F�‖c = 0 yields (by the Weierstrass theorem)
F�,c = 0 at some c ∈ C(A), a contradiction (as F�,c is nondegenerate on Tc(C(A))).
Let a = infc∈C(A) ‖F�‖c > 0. Then eVν − eV < ε/a for any ν ≥ νε i.e. {eVν }ν≥1
converges to eV uniformly on A and in particular on φ(M). Let vν = Vν ◦ φ and
v = V ◦ φ. Then {evν }ν≥1 converges to ev uniformly on M . Finally as M is compact
‖Fθ‖ (computed with respect to gM ) is bounded from above and

d∞gM

(
�∗Hν , �∗H

) = sup
c∈C(M)

∣
∣
∣evν(π(c)) − ev(π(c))

∣
∣
∣ ‖Fθ‖ → 0, ν →∞.

��
Theorem 2 Let M and A be strictly pseudoconvex CR manifolds. Let θ and � be
contact forms on M and A such that the Levi forms Gθ and G� are positive definite.
Let φ : M → A be a pseudohermitian immersion of (M, θ) into (A,�). Then (i)
any connection-preserving equivariant immersion � : C(M) → C(A) covering
φ : M → A is a minimal isometric immersion of (C(M), Fθ ) into (C(A), F�). In
particular (ii) if A = S2N+1 then

α(�)(V, W ) = tanC(S2N+1) [α(ι0 ◦�)(V, W )] (162)

for any V, W ∈ X(C(M)). Here

ι0 = p−1 ◦ ( jN+1 × j1) ◦� : C(S2N+1)→ VN+2

while � : C(S2N+1) → S2N+1 × S1 and p : VN+2 → C
N+1 × (C\{0})

are, respectively, the the natural diffeomorphism induced by the (N + 1, 0)-form
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η = j∗N+1 (d Z0 ∧ d Z1 ∧ · · · ∧ d Z N ) on S2N+1 and the biholomorphism given by
p([Z , ζ ]) = (Z/ζ , ζ N+2) for any [Z , ζ ] ∈ VN+2. Also

VN+2 =
[
C

N+1 × (C\{0})
]
/IN+2 , IN+2 = {ζ ∈ C : ζ N+2 = 1},

and tanC(S2N+1) : ι−1
0 T (VN+2)→ T (C(S2N+1)) is the tangential projection associ-

ated to the decomposition

Tc(VN+2) =
[
(dcι0) Tc(C(S2N+1))

]
⊕ E(ν(ι0))c , c ∈ C(S2N+1).

Finally (iii) if f j = Z j ◦ ι0 ◦� (0 ≤ j ≤ N ) and f = ζ ◦ ι0 ◦� (with respect to a
local coordinate system (Z j , ζ ) on VN+2) then

�̂ f j = 2n f j , �̂ f = −2 f. (163)

Here �̂ is the Laplace-Beltrami operator of (C(M), F
θ̂
) and θ̂ = λ θ . Also λ = �◦φ

where � ∈ C∞(S2N+1) is given by

�̂ = ��, �̂ = (i/2) j∗N+1

(
∂ − ∂

) |Z |2 .

To prove Theorem 2 we first establish

Lemma 9 Let α(�) be the second fundamental form of the isometric immersion � :
C(M)→ C(A).

α(�)(X↑ , Y↑) = [α(φ)(X, Y )]↑ , (164)

α(�)(X↑ , T ↑) = nor [MA(φ∗X)]↑ , (165)

α(�)(X↑ , S) = 0, (166)

α(�)(T ↑ , T ↑) = 2 nor(V ↑A ), (167)

α(�)(S , S) = α(�)(S , T ↑) = 0, (168)

for any X, Y ∈ H(M). Here MA : H(A)→ H(A) and VA ∈ H(A) are the bundle
morphism and the vector field determined by

G�(MA(X),X′) ◦ πA = (dσA)(X↑ , X′↑),
G�(VA , X↑) ◦ πA = (dσA)(T ↑A , X↑),
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for any X, X′ ∈ H(A).

Lemma 9 follows from Lemma 7 and the Gauss formula

∇F�

�∗ X̃
�∗Ỹ = �∗ ∇Fθ

X̃
Ỹ + α(�)(X̃ , Ỹ ), X̃ , Ỹ ∈ X(C(M)). (169)

Indeed if X, Y ∈ H(M) then

∇F�

�∗X↑�∗Y
↑ = ∇F�

(φ∗X)↑(φ∗Y )↑ = (by (129))

=
(
∇ A

φ∗Xφ∗Y
)↑ − [(d�)(φ∗X , φ∗Y ) ◦ πA] T ↑A

−2
{
(dσA)

(
(φ∗X)↑ , (φ∗Y )↑

)
+ g� (τA(φ∗X) , φ∗Y ) ◦ πA

}
SA =

(by the pseudohermitian Gauss formula (24) and identity (38) in Part I of this paper)

= �∗ (∇X Y )↑ + [α(φ)(X, Y )]↑ − [(dθ)(X, Y ) ◦ π ] �∗T ↑

−2
{
(dσ)(X↑ , Y↑)+ A(X, Y ) ◦ π

}
�∗S

and a comparison of the normal components yields (164). Next

∇F�

�∗X↑�∗T
↑ = ∇F�

(φ∗X)↑(φ∗T )↑ = ∇F�

(φ∗X)↑T ↑A = [by(7)]
= [τA(φ∗X)+MA(φ∗X)]↑ = (φ∗τ X)↑ +MA(φ∗X)↑

while a calculation based on the very definitions shows that

tan {MA(φ∗X)} =M(X). (170)

The explicit calculation of the normal component is more tedious (and is not required
by the proof at hand). A comparison to (169) (for X̃ = X↑ and Ỹ = T ↑) leads to
(165). Similarly the Gauss formula (169) together with (132), (133) yields (166)–
(168). Lemma 9 is proved. To prove statement (i) in Theorem 2 let H(�) = [1/(2n+
2)] traceFθ α(�) be the mean curvature vector of � : C(M) → C(A). Let {Ea :
1 ≤ a ≤ 2n} be a local orthonormal (i.e. gθ (Ea , Eb) = δab) frame of H(M). Then
{E↑a , T ↑ ± S : 1 ≤ a ≤ 2n} is a local orthonormal frame of T (C(M)) (with respect
to the Lorentzian metric Fθ ). Consequently [by (164), (166)–(168), (iii) in Proposition
3 in Part I of this paper, and T �α(φ) = 0]
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2(n + 1) H(�) =
2n∑

a=1

α(�)(E↑a , E↑a )

+α(�)(T ↑ + S , T ↑ + S)− α(�)(T ↑ − S , T ↑ − S)

= (2n + 1) H(φ)↑ = 0.

The proof of statement (ii) in Theorem 2 requires some preparation. For every
real hypersurface A ⊂ C

N+1 the canonical circle bundle is trivial i.e. C(A) ≈
A × S1 (a principal bundle isomorphism). Indeed the (N + 1, 0)-form η =
j∗ (d Z0 ∧ d Z1 ∧ · · · ∧ d Z N ) determines a global section in C(A). Here j : A →
C

N+1 is the inclusion. Let � ⊂ C
N+1 be a smoothly bounded strictly pseudocon-

vex domain. By work of Fefferman [5,6], there is a smooth defining function u of �

satisfying the complex Monge–Ampère equation

J (u) ≡ det

(
u ∂u/∂ Zk

∂u/∂ Z j ∂2u/∂ Z j ∂ Zk

)
= 1 (171)

to second order along A = ∂� and such that

�∗h = F
�̂

(172)

i.e. �∗h is the Fefferman metric corresponding to the choice of contact form �̂ =
(i/2) j∗

(
∂ − ∂

)
u(Z). Also � : C(∂�) → ∂� × S1 is the diffeomorphism induced

by η while h is the Lorentzian metric on ∂�× S1 whose construction we briefly recall
below. First one sets (cf. [5,6] or [3], p. 150)

H(Z , ζ ) = |ζ |2/(N+2)u(Z), Z ∈ �, ζ ∈ C\{0},

and considers the (0, 2)-tensor field G on �× (C\{0}) given by

G =
N+1∑

A,B=0

∂2 H

∂ Z A ∂ Z B
d Z A � d Z B .

Here Z N+1 = ζ . By a result in [5,6] G is a semi-Riemannian metric. It may be written
explicitly

G = u(Z)

(N + 2)2 |ζ |2/(N+2)−2 dζ � dζ + |ζ |
2/(N+2)

N + 2
(∂u)�

(
1

ζ
dζ

)
(173)

+ |ζ |
2/(N+2)

N + 2

(
1

ζ
dζ

)
� (∂u)+ |ζ |2/(N+2)

N∑

j,k=0

∂2u

∂ Z j∂ Zk
d Z j � d Zk .

Then h may be found by taking the pullback of G to �×S1 and passing to the limit with
Z → ∂�. From now on let � = BN+1 be the unit ball in C

N+1 so that A = S2N+1.
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Then u(Z) = |Z |2−1 is an exact solution to (171) i.e. J (u) = 1 everywhere in C
N+1

and (173) becomes

G = |ζ |2/(N+2)

{

d Z j � d Z j + 1

(N + 2)2

|Z |2 − 1

|ζ |2 dζ � dζ

+ 1

N + 2

[
(

Z j d Z j
)
� dζ

ζ
+ dζ

ζ
�

(
Z j d Z j

)
]}

where Z j = Z j . The group IN+2 = {ζ ∈ C : ζ N+2 = 1} of complex roots of unity
of order N + 2 acts freely [by setting a · (Z , ζ ) = (aZ , aζ ) for any a ∈ IN+2 and
Z ∈ C

N+1, ζ ∈ C, ζ �= 0] on C
N+1 × (C\{0}) as a properly discontinuous group of

holomorphic transformations hence the quotient space

VN+2 =
(
C

N+1 × (C\{0})
)

/IN+2

is a complex (N + 2)-dimensional manifold (cf. [1]). Also the map

p : VN+2 → C
N+1 × (C\{0}) ,

p([Z , ζ ]) =
(

Z

ζ
, ζ N+2

)
, [Z , ζ ] ∈ VN+2,

is a biholomorphism. Let us set

G0 = d Z j � d Z j − dζ � dζ . (174)

The right hand side of (174) is IN+2-invariant hence gives rise to a globally defined
semi-Riemannian metric G0 of index 2 on VN+2. In other words R

2(N+2)
2 is the uni-

versal semi-Riemannian covering space of (VN+2 , G0). A calculation shows that

p∗G = G0. (175)

Let φ : M → S2N+1 be a CR immersion from the strictly pseudoconvex CR manifold
M and let θ and � be contact forms on M and S2N+1 such that φ is a pseudohermitian
immersion of (M, θ) into (S2N+1,�). There is a C∞ function � : S2N+1 → (0,+∞)

such that �̂ = ��. Let � : C(M)→ C(S2N+1) be a connection-preserving bundle
map with base map φ. Let us consider the immersion

ι : C(S2n+1)→ C
N+1 × (C\{0}), ι = ( jN+1 × j1) ◦�,

and set ι0 = p−1 ◦ ι. If �0 = ι0 ◦� and λ = � ◦ φ ∈ C∞(M) then [by (172)]

�∗F
�̂
= F

θ̂
, ι∗G = F

�̂
, �∗0G0 = F

θ̂
, (176)
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where θ̂ = λ θ . The various metrics and isometries introduced so far are summarized
in the diagram below

(M, g
θ̂
)

π←− (C(M), F
θ̂
)

φ ↓ ↓ �

(S2N+1, g
�̂
)

πA←− (C(S2N+1), F
�̂
)

�−→ (S2N+1 × S1, h)

ι0 ↓ ↓ jN+1 × j1

(VN+2, G0)
p−→ (CN+1 × (C\{0}), G)

By the Gauss formula for the immersions �0, ι0 and �

tanC(S2N+1) [α(�0)(V, W )] = tanC(S2N+1)

[
∇G

(d�0)V (d�0)W
]

−�∗∇F
θ̂

V W =∇F
�̂

�∗V �∗W−�∗∇F
θ̂

V W =α(�)(V, W )

for any V, W ∈ X(C(M)). The identity (162) is proved. For each B ∈ X(VN+2) we
denote by B p ∈ X(CN+1 × (C\{0}) the tangent vector field given by

B p
y = (dp−1(y) p)Bp−1(y) , y ∈ C

N+1 × (C\{0}) .

One has

(
∂

∂ Z j

)p

= ζ−1/(N+2) ∂

∂ Z j
, (177)

(
∂

∂ζ

)p

= ζ−1/(N+2)

{
−Z j ∂

∂ Z j
+ (N + 2) ζ

∂

∂ζ

}
. (178)

To prove statement (iii) in Theorem 2 we first establish

Lemma 10 The mean curvature vector of the isometric immersion �0 : (C(M), F
θ̂
)

→ (VN+2 , G0) is given by

2(n + 1) H(�0) = −
{(

�̂ f j
) ∂

∂ Z j
+

(
�̂ f

) ∂

∂ζ

}
+ complex conjugates

(179)

where �̂ is the wave operator of (C(M), F
θ̂
). Also f j = Z j ◦�0 and f = ζ ◦�0.
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Proof For any X ∈ X(C(M))

(d�0)X = X ( f j )
∂

∂ Z j
+ X ( f j )

∂

∂ Z j
+ X ( f )

∂

∂ζ
+ X ( f )

∂

∂ζ

with respect to the local coordinate system (Z j , ζ ) on VN+2. Hence

∇G0
(d�0)X (d�0)X = X2( f j )

∂

∂ Z j
+ X2( f )

∂

∂ζ
+ complex conjugates. (180)

Let {Xa : 1 ≤ a ≤ 2n + 2} be a local orthonormal (i.e. F
θ̂
(Xa , Xb) = εa δab where

ε1 = · · · = ε2n+1 = 1 and ε2n+2 = −1) frame of T (C(M)). Then (180) and the
Gauss formula for �0 together with

(2n + 2) H(�0) =
2n+2∑

a=1

εa α(�0)(Xa , Xa)

yield (179) as �̂ is locally given by

�̂u = −
2n+2∑

a=1

{
X2

a(u)− (∇F
θ̂

Xa
Xa)(u)

}
, u ∈ C2(C(M)).

��
Lemma 11 The tangent vector fields ξ1 , ξ2 ∈ X(CN+2\{ζ = 0}) given by

ξ1 = 1

CN

{

Z j ∂

∂ Z j
+ Z j

∂

∂ Z j
+ ζ

∂

∂ζ
+ ζ

∂

∂ζ

}

,

ξ2 = 1

CN

{

Z j ∂

∂ Z j
+ Z j

∂

∂ Z j
− (N + 3)

[
ζ

∂

∂ζ
+ ζ

∂

∂ζ

]}

,

form an orthonormal frame of the normal bundle ν( jN+1 × j1)→ S2N+1 × S1 i.e.

G(ξ1 , ξ1) = 1, G(ξ2 , ξ2) = −1, G(ξ1 , ξ2) = 0. (181)

Here CN = √(N + 4)/(N + 2).

Proof Note that

G(∂/∂ Z j , ∂/∂ Zk) = 1

2
δ

j
k , G(∂/∂ζ , ∂/∂ζ ) = 0,

G(∂/∂ Z j , ∂/∂ζ ) = 1

2(N + 2)
Z j/ζ ,
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everywhere on S2N+1× S1. For each n ≥ 1 let nn =∑n
j=1(z

j ∂/∂z j + z j ∂/∂z j ) (the

unit normal to S2n−1 ⊂ C
n). If Na = nN+1 + a n1 with a ∈ R then G(Na , Nb) =

1 + (a + b)/(N + 2). Then ξ1 = (1/CN ) N1 and ξ2 = (1/CN ) N−(N+3) satisfy the
requirement (181). ��
Lemma 12 Let L N = √(N + 2)(N + 4) and η1 , η2 ∈ X(VN+2) given by (ηa)p =
ξa for a ∈ {1, 2}. Then

η1 = 1

L N
{(N + 3) nN+1 + n1} , η2 = − 1

L N
{nN+1 + (N + 3)n1} ,

is a local frame of ν(ι0)→ C(S2N+1).

The proof follows from (177), (178) and Lemma 11. At this point we may take
traces in (162) to get

tanC(S2N+1) [H(�0)] = 0.

Therefore [by (179)]

(
�̂ f j

) ∂

∂ Z j
+

(
�̂ f

) ∂

∂ζ
+ complex conjugates = λ1 η1 + λ2η2

for some λa ∈ C∞(C(S2N+1)) so that (by Lemma 12)

�̂ f j =
(

N + 3

L N
λ1 − 1

L N
λ2

)
f j , 0 ≤ j ≤ N , (182)

�̂ f =
(

1

L N
λ1 − N + 3

L N
λ2

)
f. (183)

Let us contract (182), (183) with f j and f respectively and use

�̂(uv) = (�̂u) v + u (�̂v)− 2 F
θ̂
(D̂u, D̂v), u, v ∈ C2(C(M)),

where D̂u is the gradient of u i.e. F
θ̂
(D̂u , X) = X (u) for any X ∈ X(C(M)). We

obtain

(N + 3)λ1 − λ2 = L N F
θ̂
(D̂ f j , D̂ f j ), (184)

λ1 − (N + 3)λ2 = L N F
θ̂
(D̂ f , D̂ f ). (185)
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On the other hand �∗0G0 = F
θ̂

yields

2εaδab = Xa( f j )Xb( f j )− Xa( f )Xb( f )+ complex conjugate

hence (multiplying by εa and contracting a and b)

2n + 2 = F
θ̂
(D̂ f j , D̂ f j )− F

θ̂
(D̂ f , D̂ f ). (186)

Therefore (184)–(186) imply λ1 + λ2 = 2(n + 1)CN . If λ1 = μ then

�̂ f j =
[

CN μ− 2(n + 1)

N + 2

]
f j , 0 ≤ j ≤ N , (187)

�̂ f =
[

CN μ− 2(n + 1)(N + 3)

N + 2

]
f. (188)

Next [by (184)–(186)]

μ = 1

L N

{
(N + 2) F

θ̂
(D̂ f j , D̂ f j )+ 2n + 2

}
. (189)

Lemma 13 Let φ : M → S2N+1 be a pseudohermitian immersion and � : C(M)→
C(S2N+1) a connection-preserving equivariant map covering φ. Let us consider

u j = Z j ◦ jN+1 ◦ φ ∈ C∞(M, C), 0 ≤ j ≤ N .

Then f j is the vertical lift of u j i.e. f j = u j ◦ π . In particular

�̂ f j = (�̂bu j ) ◦ π (190)

where �̂b is the sublaplacian of (M, θ̂ ).

The verification of the first statement requires a rather pedantic notational distinction
among the (local) complex coordinates (Z̃ j ), (W j , η) and (Z j , ζ ) on C

N+1, C
N+1×

(C\{0}) and VN+2 respectively. Here Z j = W j ◦ p for any 0 ≤ j ≤ N . Let

�N+1 : CN+1 × C\{0} → C
N+1, πN+1 : S2n+1 × S1 → S2N+1,

be the natural projections so that

jN+1 ◦ πN+1 = �N+1 ◦ ( jN+1 × j1) , W j = Z̃ j ◦�N+1.
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Also the diagram

C(S2N+1)
�−→ S2N+1 × S1

πA ↓ ↓ πN+1

S2N+1 = S2N+1

is commutative. Then

u j ◦ π = Z̃ j ◦ jN+1 ◦ φ ◦ π = Z̃ j ◦ jN+1 ◦ (πA ◦�)

= Z̃ j ◦ jN+1 ◦ (πN+1 ◦�) ◦� = Z̃ j ◦ [
�N+1 ◦ ( jN+1 × j1)

] ◦� ◦�

= W j ◦ ι ◦� =
(

W j ◦ p
)
◦

(
p−1 ◦ ι

)
◦� = Z j ◦ ι0 ◦� = f j . ��

We recall that the sublaplacian of (M, θ) is the second order differential operator

�bu = −div
(
∇H u

)
, u ∈ C2(M),

where LX (θ ∧ (dθ)n) = div(X) θ ∧ (dθ)n for any X ∈ X(M). Also LX denotes the
Lie derivative. As � (the wave operator of (C(M), Fθ )) is S1-invariant it admits a
natural push-forward π∗� (defined on C2(M)). By a result of Lee [10], π∗� = �b

(cf. also Proposition 2.8 in [3], p. 140) thus yielding (190). ��
Let {Ea : 1 ≤ a ≤ 2n} be a local Gθ -orthonormal frame of H(M). Then{

(λ ◦ π)−1/2 E↑a , (λ ◦ π)−1/2(T ↑ ± S) : 1 ≤ a ≤ 2n
}

is a local F
θ̂
-orthonormal

frame of T (C(M)). Horizontal lifting is meant with respect to the connection 1-form
σ . Then (by Lemma 13)

F
θ̂
(D̂ f j , D̂ f j ) =

1

λ ◦ π

{
2n∑

a=1

E↑a ( f j )E↑a ( f j )

+ (T ↑ + S)( f j ) (T ↑ + S)( f j )− (T ↑ − S)( f j ) (T ↑ − S)( f j )
}

= 1

λ ◦ π

2n∑

a=1

[
Ea(u j ) ◦ π

] [
Ea(u j ) ◦ π

]
.

Let G N+1 = d Z j � d Z j be the canonical flat metric on C
N+1 and Êa = λ−1/2 Ea .

The Webster metric g
�̂

and the metric induced on S2N+1 by G N+1 actually coincide.
Then (by Lemma 4 in Part I of this paper) g

θ̂
= ( jN+1 ◦ φ)∗G N+1 so that

δab = g
θ̂
(Êa , Êb) = 1

2λ

{
Ea(u j ) Eb(u j )+ Ea(u j ) Eb(u

j )
}
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or (by contracting a and b)

2n = 1

λ

2n∑

a=1

Ea(u j ) Ea(u j ).

We may conclude that

F
θ̂
(D̂ f j , D̂ f j ) = 2n (191)

so that [by (189) and (191)]

μ = 1

L N
[2n(N + 2)+ 2n + 2] .

This yields the multipliers of f j and f in (187), (188) thus leading to (163). Theorem
2 is proved. ��

At this point we may prove Corollary 5 (as stated in Sect. 5). The direct statement
there follows from (163) in Theorem 2 and (190) in Lemma 13. As to the converse let
us set �0 = p−1 ◦� so that �∗0G0 = F

θ̂
. Since � covers φ (i.e. �N+1 ◦� = φ ◦ π )

it follows that u j ◦ π = f j where f j = Z j ◦�. Therefore �̂ f j = μ f j so that (by
observing that Lemma 10 holds for any isometric immersion �0 : C(M)→ VN+2 of
(C(M), F

θ̂
) into (VN+2, G0))

2(n + 1)H(�0) = −
(
�̂ f j

) ∂

∂ Z j
−

(
�̂ f

) ∂

∂ζ
+ complex conjugate

= −μ f j ∂

∂ Z j
+ 2 f

∂

∂ζ
+ complex conjugate.

On the other hand for any X ∈ X(C(M)) the vector fields (d�0)X and H(�0) are
respectively tangent and normal to �0(C(M)) hence

0 = 2(n + 1) G0((d�0)X , H(�0))

= −μ

2
X ( f j ) f j + X ( f ) f + complex conjugate

= −μ

2
X ( f j f j )+ X (| f |2)

so that f j f j = R2 for some constant R > 0. In particular

0 = �̂
(

f j f j

)
=

(
�̂ f j

)
f j + f j �̂ f j − 2 F

θ̂
(D̂ f j , D̂ f j )

= 2μ f j f j − 2 F
θ̂
(D̂ f j , D̂ f

j
),

0 = �̂
(
| f |2

)
=

(
�̂ f

)
f + f �̂ f − 2 F

θ̂
(D̂ f , D̂ f ) = −4 | f |2 − 2 F

θ̂
(D̂ f , D̂ f ).
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Let us subtract the two previous equations and use (186) (a consequence of �∗0G0 = F
θ̂

alone). We obtain μ f j f j + 2 | f |2 = 2(n + 1) i.e. μ R2 = 2n. ��
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