Wavelet packets provide an algorithm with many applications in signal processing together with a large class of orthonormal bases of L^2(R), each one corresponding to a different splitting of L^2(R) into a direct sum of its closed subspaces. The definition of wavelet packets is due to the work of Coifman, Meyer, and Wickerhauser, as a generalization of the Walsh system. A question has been posed since then: one asks if a (general) wavelet packet system can be an orthonormal basis for L2(R) whenever a certain set linked to the system, called the “exceptional set” has zero Lebesgue measure. This question is reflected in the quality of wavelet packet approximation. In this paper we show that the answer to this question is negative by providing an explicit example. In the proof we make use of the “local trace function” by Dutkay and the generalized shift-invariant system machinery developed by Ron and Shen.

The Solution of a Problem of Coifman, Meyer, and Wickerhauser on Wavelet Packets.

SALIANI, Sandra
2011-01-01

Abstract

Wavelet packets provide an algorithm with many applications in signal processing together with a large class of orthonormal bases of L^2(R), each one corresponding to a different splitting of L^2(R) into a direct sum of its closed subspaces. The definition of wavelet packets is due to the work of Coifman, Meyer, and Wickerhauser, as a generalization of the Walsh system. A question has been posed since then: one asks if a (general) wavelet packet system can be an orthonormal basis for L2(R) whenever a certain set linked to the system, called the “exceptional set” has zero Lebesgue measure. This question is reflected in the quality of wavelet packet approximation. In this paper we show that the answer to this question is negative by providing an explicit example. In the proof we make use of the “local trace function” by Dutkay and the generalized shift-invariant system machinery developed by Ron and Shen.
2011
File in questo prodotto:
File Dimensione Formato  
fulltext.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 619.76 kB
Formato Adobe PDF
619.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/4419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact