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Abstract Wavelet packets provide an algorithm with many applications in signal
processing together with a large class of orthonormal bases of L2(R), each one cor-
responding to a different splitting of L2(R) into a direct sum of its closed subspaces.
The definition of wavelet packets is due to the work of Coifman, Meyer, and Wick-
erhauser, as a generalization of the Walsh system. A question has been posed since
then: one asks if a (general) wavelet packet system can be an orthonormal basis for
L2(R) whenever a certain set linked to the system, called the “exceptional set” has
zero Lebesgue measure. This answer to this question affects the quality of wavelet
packet approximation. In this paper we show that the answer to this question is neg-
ative by providing an explicit example. In the proof we make use of the “local trace
function” by Dutkay and the generalized shift-invariant system machinery developed
by Ron and Shen.

Keywords Wavelet packets · Local trace function · Tight frame · Generalized
shift-invariant systems
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1 Introduction

Wavelet packets are employed in many applications in signal processing. They give
rise to a large class of orthonormal bases of L2(R), each one corresponding to a
different splitting of L2(R) into a direct sum of its closed subspaces.
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The definition of wavelet packets is due to the work of Coifman, Meyer, and Wick-
erhauser [3]. It is an attempt to construct an orthonormal basis (ONB) associated
with an arbitrary partition of the time-frequency plane by some Heisenberg boxes,
together with an algorithm that allows a given signal to be effectively represented by
time-frequency atoms. Any wavelet packet 2q/2wn(2qx − k) is linked to a Heisen-
berg box Rn,q,k which indicates the time and frequency regions where the energy of
this wavelet packet is mostly concentrated, namely Rn,q,k = [k2−q, (k + 1)2−q ] ×
[n2q, (n + 1)2q ]. The time interval k2−q ≤ x ≤ (k + 1)2−q is the time support of
the Walsh wavelet packet, while the frequency interval n2q ≤ ξ ≤ (n + 1)2q is the
positive frequency support of the Shannon wavelet packet. In this way any wavelet
packet basis realizes an exact partition of the time-frequency plane even though gen-
eral wavelet packets have a time and frequency spread that is wider than the Heisen-
berg box. A wavelet packet basis divides the frequency axis into intervals of vary-
ing sizes, and the pavings of the time frequency plane are provided with horizontal
strips. In other words, wavelet packets correspond to adaptive filtering of the fre-
quency axis.

The construction is realized as follows. Let us start with a pair of quadratic mirror
filters (QMF) with transfer functions m0(θ) and m1(θ) = e−iθm0(θ + π) associated
to a multiresolution analysis (MRA) with wavelet ψ and scaling function ϕ. Let us
define first the basic wavelet packets, recursively, by the formulas (for the Fourier
transform):

ŵ0(θ) = ϕ̂(θ), ŵ1(θ) = ψ̂(θ),

ŵ2n(θ) = m0

(
θ

2

)
ŵn

(
θ

2

)
,

ŵ2n+1(θ) = m1

(
θ

2

)
ŵn

(
θ

2

)
.

The general wavelet packets are defined by taking some of the dilation and trans-
lation of the basic ones, i.e.,

2q/2wn(2
qx − k), k ∈ Z, (n, q) ∈ E ⊂ N × Z. (1)

For the sake of brevity we shall call (1) wavelet packets again.
It is well known that (1) is an orthonormal basis of L2(R) provided the set E sat-

isfies the following assumption: the dyadic (frequency) intervals In,q = [2qn,2q(n +
1)), (n, q) ∈ E, form a disjoint covering of [0,+∞). In [3], Coifman, Meyer, and
Wickerhauser proved that, in the case of the Lemarié–Meyer wavelet, the above re-
sult could be extended to disjoint coverings of the form

[0,+∞) =
⋃

(n,q)∈E

In,q ∪ A,

where the set A is any denumerable set called, hereafter, the “exceptional” set asso-
ciated with (1).
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Each choice of E corresponds to a different splitting of L2(R) and so to a different
orthonormal basis: E = {1} × Z leads to the wavelet basis, E = N × {0} to the basis
wn(x − k), k ∈ Z, n ∈ N. In the first case A = {0}, in the second case A is the empty
set. For a fixed scale 2j , L2(R) is then decomposed, by the wavelet packet procedure,
into the orthogonal sum of closed subspaces Wn,j = span{2j/2wn(2j x − k) | k ∈ Z},
n ∈ N. Note that any W0,j = Vj is a subspace of the underlying MRA.

However, there are choices of E where the intervals In,q form a disjoint covering
of [0,+∞) and the exceptional set A is not denumerable: think of A as a Cantor like
set.

Therefore Coifman, Meyer, and Wickerhauser have posed the question of whether
the above result could be generalized to exceptional sets A with zero Lebesgue mea-
sure. Even if this situation does not occur in applications, where A is generally empty
or at most finite, this is a deep mathematical question whose answer influences the
quality of wavelet packet approximations.

In the case of the Lemarié–Meyer wavelet, in [12] we gave a positive answer to
this question when the Hausdorff dimension of A is strictly less then 1/2, while in
[13] we provided an orthonormal basis corresponding to A with Hausdorff dimension
exactly 1/2.

In this work we show that the answer to the problem is negative by providing an
explicit example of a set A, with Hausdorff dimension exactly 1/2, corresponding to
a wavelet packet system for the Lemarié–Meyer wavelet, which is not an orthonormal
basis for L2(R). As a consequence we obtain that the result in [12] is sharp.

It seems, from the proof, that the value 1/2 depends on the chosen wavelet and
that the more m0(θ) is close to the ideal filter, the more orthonormal bases one could
get. Here for the ideal filter we intend that of the Shannon system, i.e., a 2π periodic
extension of the function χ[− π

2 , π
2 ).

The proof, obtained by reductio ad absurdum, has been made possible by con-
sidering two recent tools. The first one is the “local trace function” by Dutkay [4]
and its property of being invariant with respect to different choices of normalized
tight frames. The second one is the “generalized shift-invariant system” machinery
developed by Ron and Shen [11]. It allows us, under the hypothesis that our wavelet
packet system is an orthonormal basis of L2(R), to obtain another Z-shift invariant
normalized tight frame for L2(R). A crucial role is played by our choice of E and
thus of A. By previous results in [14] on the continuous measures μk, k ∈ Z induced
by the wavelet packet algorithm on the Borel sets of [0,1) [3], we are then forced to
contradiction.

Indeed the problem can be reformulated by stating that any measure μk is ab-
solutely continuous with respect to Lebesgue measure. Actually, it follows by defi-
nition that absolute continuity for one μk implies the same property for all, so, as a
consequence we can say that none of them is absolutely continuous.

On the other hand, in the extreme cases of the Walsh system and the Shannon
system, one can easily compute the values of such measures in dyadic intervals by
means of (9). In the first case the quadrature mirror filters are m0(θ) = 1

2 (e−iθ + 1)

and m1(θ) = 1
2 (e−iθ − 1), while in the second case ideal filters are being used. In

both cases one easily sees that each measure is exactly Lebesgue measure, thus in
these two cases it obviously suffices that A be a set with zero Lebesgue measure.



18 Constr Approx (2011) 33: 15–39

We have to mention that the above measures are a particular case of measures
studied by Jorgensen in [9], and therefore we expect that a generalization of the tools
involved could be successfully applied also in the more general setting; this will be
the matter for a further study.

The paper is structured as follows. In Sect. 2 we introduce the wavelet packet sys-
tem which leads to the negative answer. In Sect. 3 we review the local trace function.
In Sect. 4 we show how wavelet packet systems fit into the scheme of generalized
shift-invariant systems. In Sect. 5 we recall properties of measures μk , and finally in
Sect. 6 we combine things together to obtain the contradiction.

2 A Counterexample to the Wavelet Packet Conjecture

In this section we introduce the exceptional set which contradicts the conjecture, and
we establish in Theorem 2.2 a fundamental property of our wavelet packet system.
Let us define

E =
⋃

M∈N

EM,

where

E0 =
{

(n, q) ∈ N × Z | q = −2p,p ∈ N
∗, n =

2p∑
h=1

εh2h−1, ε1 = 0,

ε2i+1 = 1, i = 1,0, . . . , p − 1

}
,

E1 = {(
n + 2−q, q

) ∈ N × Z | (n, q) ∈ E0
}
,

EM = {
(M,0)

}
, M ≥ 2.

For any (n, q) ∈ E, let us set In,q = [2qn,2q(n + 1)) and the corresponding sub-
space by Wn,q = span{2q/2wn(2qx − k) | k ∈ Z}. It is easy to see (see Fig. 1) that for
(n, q) ∈ E0 ∪ E1, the value of each εh in the dyadic expansion of n is related to the
“path” in the tree structure from the subspace Wn,q up: εh = 0 if one takes the left
“leaf,” εh = 1 otherwise. Obviously,

[2,+∞) =
⋃
M≥2

[M,M + 1) =
⋃
M≥2

⋃
(n,q)∈EM

In,q,

while

[0,2) =
⋃

(n,q)∈E0∪E1

In,q ∪ A,

where the set A has Lebesgue measure zero and Hausdorff dimension equal to 1/2.

Indeed if we set
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Fig. 1 The closed subspaces of L2(R) corresponding to our choice of E

F0 =
{

(n, q) ∈ N × Z | q = −2p,p ∈ N
∗, n =

2p∑
h=1

εh2h−1,

ε2i+1 = 1, i = 0, . . . , p − 1

}
,

F1 = {(
n + 2−q, q

) ∈ N × Z | (n, q) ∈ F0
}
,

we can write A as the disjoint union of two sets:

A =
⋂

(n,q)∈F0

In,q ∪
⋂

(n,q)∈F1

In,q = A0 ∪ A1.

It is easy to see that A0, as well as A1, is constructed like a Cantor set. In particu-
lar the compact set A0 is the invariant set of the iterated function system (f1, f2),
fi : R → R, f1(x) = x+1

4 , f2(x) = x+3
4 , which satisfies Moran’s open set condi-

tion, see [6]. So the Hausdorff dimension of A0, dimH A0 is equal to the similar-
ity dimension s = log 2

log 4 = 1/2. One gets the same conclusion for A1 and finally
dimH A = max(dimH A0,dimH A1) = 1/2.

Therefore

[0,+∞) =
⋃

M∈N

⋃
(n,q)∈EM

In,q ∪ A,

and A is our exceptional set.
Consider the Lemarié–Meyer wavelet and the wavelet packet system correspond-

ing to our choice of E:

X = {
2q/2wn

(
2qx − k

) | k ∈ Z, (n, q) ∈ E
}
. (2)
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Fig. 2 Intervals where m0(22p−1ξ) = 1, for p = 1,2,3

We shall assume that it is an orthonormal basis in order to get a contradiction.
Before that, however, we shall show an inequality which does not rely on orthonor-
mality. We need a preliminary lemma.

Lemma 2.1 Let m0 and ϕ be, respectively, the transfer and the scaling function of
the Lemarié–Meyer wavelet. Then for almost all ξ ∈ [−4π/3,4π/3] = supp ϕ̂, there
exists N ≥ 1 such that m0(22N−1ξ) = 1.

Proof It is sufficient to prove that (| · | denotes the Lebesgue measure)

∣∣∣∣
{
ξ ∈

[
−4π

3
,

4π

3

]
| ∃N ≥ 1, such that m0

(
22N−1ξ

) = 1

}∣∣∣∣

=
+∞∑
N=1

∣∣∣∣
{
ξ ∈

[
−4π

3
,

4π

3

]
| m0

(
22N−1ξ

) = 1

}

∖{
ξ ∈

[
−4π

3
,

4π

3

]
| m0

(
22N−3ξ

) = 1

}∣∣∣∣
= 8π

3
,

and this will be done by looking at the support of each dilation of m0. First of all
recall that in [−π,π], m0(ξ) = 1 in [−π/3,π/3] and m0(ξ) = 0 in [−π,−2π/3] ∪
[2π/3,π]. Now

suppm0
(
22N−1· ) =

[
− 2π

3 · 22N−1
,

2π

3 · 22N−1

]
+ 2πZ

22N−1
,

and if we look for the number of subintervals in [− 4π
3 , 4π

3 ] where m0(22N−1ξ)

equals 1, a rapid inspection and the symmetry of m0 show that this number is equal
to

αN = 2 · 22N − 1

3
+ 1 = 22N+1 + 1

3
.
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Indeed, by symmetry, it is sufficient to examine [0, 4π
3 ) and to look for the biggest

βN ∈ N such that

2π

3 · 22N−1
+ 2πβN

22N−1
≤ 4π

3
.

We get

βN = 22N − 1

3
= 4βN−1 + 1,

and so

αN = 2βN + 1 = 2 · 22N − 1

3
+ 1 = 22N+1 + 1

3
.

Now let γN be the number of subintervals in [− 4π
3 , 4π

3 ] where m0(22N−1ξ) = 1, out
of all those (bigger ones) where also m0(22h−1ξ) = 1, h = 1, . . . , N − 1, N ≥ 2. Set
γ1 = α1 = 3. The measure we look for is equal to

+∞∑
N=1

γN

2π

3 · 22N−1
.

We have the relation

γN +
N−1∑
p=1

βN−pγp = αN.

Indeed, by symmetry and the structure of m0, it is easy to see that, for any h =
1, . . . ,N − 1, the number of subintervals where m0(22N−1ξ) = 1 which fall into
each one of those where m0(22p−1ξ) = 1, p = 1, . . . ,N − 1, decreases with p and it
is exactly βN−p = 22(N−p)−1

3 . This is shown in the following calculation (see Fig. 2).
If we examine any interval where m0(2ξ) = 1, for example the one which contains
the origin, we notice that the right endpoint coincides with the right endpoint of an
interval where m0(23ξ) = 0. Indeed, π

3·2 = 4π

3·23 . This feature applies, by periodicity

and re-scaling, to any couple m0(22N−1ξ) and m0(22p−1ξ), p = 1, . . . ,N − 1, so
any bigger interval contains, by symmetry, 2k + 1 smaller intervals, where k ∈ N is
such that

π

3 · 22p−1
= 4π

3 · 22N−1
+ 2πk

22N−1
.

We get k = 22(N−p)−1−2
3 , and the total number is equal to

2k + 1 = 22(N−p) − 1

3
= βN−p,

as claimed. Hence

γN = αN −
N−1∑
p=1

βN−pγp = αN − γN−1 −
N−2∑
p=1

(4βN−p−1 + 1)γp
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= αN − γN−1 − 4(αN−1 − γN−1) −
N−2∑
p=1

γp

= 3γN−1 − 1 −
N−2∑
p=1

γp.

We claim that γN = 2γN−1 + 2N−1, which is equivalent to

γN−1 − 1 −
N−2∑
h=1

γh = 2N−1,

easily proved by induction on N ≥ 3.
So, by a recurrence argument and since γ1 = 3, we find

γN = 2γN−1 + 2N−1 = 2
(
2γN−2 + 2N−2) + 2N−1

= · · · = 2N−1γ1 + (N − 1)2N−1 = (N + 2)2N−1.

Finally the measure we look for is equal to

+∞∑
N=1

γN

2π

3 · 22N−1
=

+∞∑
N=1

(N + 2)2N−1 2π

3 · 22N−1
= 8π

3

+∞∑
N=1

(N + 2)

2N+2
= 8π

3
.

�

The specific choice of E, and thus of A, is crucial in the following theorem:

Theorem 2.2 Let us consider the wavelet packet system X (2). Then, a.e.

(1)
∑

(n,q)∈E0

∣∣ŵn

(
2−qξ

)∣∣2 ≥ ∣∣ϕ̂(ξ)
∣∣2

and
∑

(n,q)∈E1

∣∣ŵn

(
2−qξ

)∣∣2 ≥ ∣∣ψ̂(ξ)
∣∣2;

(2)
∑

(n,q)∈E

∣∣ŵn

(
2−qξ

)∣∣2 ≥ 1.

Proof We prove the first inequality in (1); the other one is proved similarly, replacing
ϕ by ψ .

For a fixed p ∈ N
∗ we collect all indexes n such that (n,−2p) ∈ E0 in the set

E
p

0 = {n ∈ N|(n,−2p) ∈ E0}. Then, by unconditional convergence, we get

∑
(n,q)∈E0

∣∣ŵn

(
2−qξ

)∣∣2 = lim
N→+∞

N∑
p=1

∑
n∈E

p
0

∣∣ŵn

(
22pξ

)∣∣2
. (3)

We claim that

(i)
∑
n∈E1

0

∣∣ŵn

(
22ξ

)∣∣2 = ∣∣m0(2ξ)ϕ̂(ξ)
∣∣2;
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(ii)
∑
n∈E

p
0

∣∣ŵn

(
22pξ

)∣∣2 = ∣∣m0
(
22p−1ξ

)
m1

(
22p−3ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2
, p > 1.

To show (i) we note first that E1
0 = {0,2}, hence

∑
n∈E1

0

∣∣ŵn

(
22ξ

)∣∣2 = ∣∣ϕ̂(
22ξ

)∣∣2 + ∣∣m0(2ξ)ŵ1(2ξ)
∣∣2

= ∣∣m0(2ξ)
∣∣2[∣∣m0(ξ)

∣∣2∣∣ϕ̂(ξ)
∣∣2 + ∣∣m1(ξ)

∣∣2∣∣ϕ̂(ξ)
∣∣2] = ∣∣m0(2ξ)ϕ̂(ξ)

∣∣2
.

To show (ii) we observe that, for a fixed p > 1, any n ∈ E
p

0 is in the form

n = ε22 + 22 + ε423 + 24 + · · · + 22p−2 + ε2p22p−1, ε2i = 0,1.

This fact is reflected in the expression of ŵn with the occurrence either of m0 or m1.
Indeed,

ŵn(ξ) = m0

(
ξ

2

)
mε2

(
ξ

22

)
m1

(
ξ

23

)
mε4

(
ξ

24

)
. . .m1

(
ξ

22p−1

)
mε2p

(
ξ

22p

)
ϕ̂

(
ξ

22p

)
.

Therefore, |m0(ξ)|2 + |m1(ξ)|2 = 1 leads to

∑
n∈E

p
0

∣∣ŵn

(
22pξ

)∣∣2 =
∑

i=1,...,p
ε2i=0,1

∣∣m0
(
22p−1ξ

)
mε2

(
22p−2ξ

)
m1

(
22p−3ξ

)

. . .mε2p−2

(
22ξ

)
m1(2ξ)mε2p

(ξ)ϕ̂(ξ)
∣∣2

= ∣∣m0
(
22p−1ξ

)
m1

(
22p−3ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2
,

and (ii) is proved. Returning back to (3) we get

∑
(n,q)∈E0

∣∣ŵn

(
2−qξ

)∣∣2 = ∣∣m0(2ξ)ϕ̂(ξ)
∣∣2

+
+∞∑
p=2

∣∣m0
(
22p−1ξ

)
m1

(
22p−3ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2
. (4)

Next we show that, for any N ≥ 2, we have

N∑
p=2

∣∣m0
(
22p−1ξ

)
m1

(
22p−3ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2 = ∣∣m1(2ξ)ϕ̂(ξ)
∣∣2 (5)

in the set where m0(22N−1ξ) = 1. Indeed,

N∑
p=2

∣∣m0
(
22p−1ξ

)
m1

(
22p−3ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2
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= ∣∣m0
(
22N−1ξ

)
m1

(
22N−3ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2

+ ∣∣m0
(
22(N−1)−1ξ

)
m1

(
22(N−1)−3ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2

+
N−2∑
p=2

∣∣m0
(
22p−1ξ

)
m1

(
22p−3ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2

= ∣∣m1
(
22(N−1)−3ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2 +
N−2∑
p=2

∣∣m0
(
22p−1ξ

)
. . .m1(2ξ)ϕ̂(ξ)

∣∣2
,

since m0(22N−1ξ) = 1 and |m1(22N−3ξ)|2 + |m0(22(N−1)−1ξ)|2 = 1. The same ar-
gument, repeated a finite number of times, leads to the result.

Finally, equality (4) implies the desired inequality for all points out of the (com-
pact) support of ϕ̂, while Lemma 2.1, (4), and (5) yield the result for a.e. ξ ∈
supp ϕ̂. Indeed, Lemma 2.1 implies that for a.e. ξ ∈ supp ϕ̂ there exists N such that
m0(22N−1ξ) = 1. If N = 1 we invoke (4), while for N ≥ 2, (5) implies

∑
(n,q)∈E0

∣∣ŵn

(
2−qξ

)∣∣2 ≥ ∣∣m0(2ξ)ϕ̂(ξ)
∣∣2 + ∣∣m1(2ξ)ϕ̂(ξ)

∣∣2 = ∣∣ϕ̂(ξ)
∣∣2

.

This completes the proof of (1).
To show (2) we use the definition of wavelet packets and (1) to estimate

∑
(n,q)∈E

∣∣ŵn

(
2−qξ

)∣∣2 =
∑

(n,q)∈E0

∣∣ŵn

(
2−qξ

)∣∣2 +
∑

(n,q)∈E1

∣∣ŵn

(
2−qξ

)∣∣2 +
+∞∑
n=2

∣∣ŵn(ξ)
∣∣2

≥ ∣∣ϕ̂(ξ)
∣∣2 + ∣∣ψ̂(ξ)

∣∣2 +
+∞∑
n=2

∣∣ŵn(ξ)
∣∣2

=
+∞∑
n=0

∣∣ŵ2n(ξ)
∣∣2 +

+∞∑
n=0

∣∣ŵ2n+1(ξ)
∣∣2

=
+∞∑
n=0

∣∣∣∣m0

(
ξ

2

)
ŵn

(
ξ

2

)∣∣∣∣
2

+
+∞∑
n=0

∣∣∣∣m1

(
ξ

2

)
ŵn

(
ξ

2

)∣∣∣∣
2

=
+∞∑
n=0

∣∣∣∣ŵn

(
ξ

2

)∣∣∣∣
2

= · · · =
+∞∑
n=0

∣∣∣∣ŵn

(
ξ

2j

)∣∣∣∣
2

,

for any j ∈ N. Now, since the system {wn(· − k), n ∈ N, k ∈ Z} is an orthonormal
basis of L2(R), Proposition 3.3 of [5] applies to V0 = L2(R) and we have

lim
j→+∞

+∞∑
n=0

∣∣∣∣ŵn

(
ξ

2j

)∣∣∣∣
2

= 1, a.e. ξ ∈ R,

thus completing the proof. �
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3 The Local Trace Function

Both subspaces V0 and W0 arising in the wavelet packet decomposition of L2(R)

are Z shift invariant spaces. In the setting of such spaces Dutkay [4], has defined an
invariant, the local trace function. The fact that it can be calculated with any nor-
malized tight frame generator will be used in the proof of our main result: We shall
compute the local trace function in two different ways and the resulting quantities
will be obliged to be equal. In this section we recall definitions and necessary results
to our scope; the interested reader can find more in Dutkay’s work [4].

We say that a closed subspace V ⊂ L2(R) is shift invariant (SI) if for every f ∈ V

we also have Tkf ∈ V when k ∈ Z, where Tkf (x) = f (x − k). For any Φ ⊂ L2(R)

let

S(Φ) = span{Tkϕ|ϕ ∈ Φ,k ∈ Z}
be the SI space generated by Φ.

A periodic range function is any measurable mapping

Jper : R → {
closed subspaces of 
2(Z)

}
satisfying the periodicity condition

Jper(ξ + 2πk) = λ(k)∗
(
Jper(ξ)

)
for all k ∈ Z, ξ ∈ R,

where λ denotes the shift operator on 
2(Z),

λ(k)
(
(ah)h∈Z

) = (ah−k)h∈Z, k ∈ Z.

Measurable means weakly operator measurable, i.e., ξ �→ 〈PJper(ξ)a, b〉 is measurable
for any choice of a, b ∈ 
2(Z).

Note that the periodic range function is uniquely determined by its values on the
representatives of the cosets of R/2πZ identified with [−π,π]. Sometimes we shall
indicate with the same letter both the subspace Jper(ξ) and the projection onto Jper(ξ).

Let us now recall some spaces and maps. The first one is the Hilbert space of
measurable vector-valued functions

L2([−π,π], 
2(Z)
) =

{
F : [−π,π] → 
2(Z) |

∫
[−π,π]

∥∥F(ξ)
∥∥2


2(Z)
dξ < +∞

}
,

where the scalar product is given by

〈F,G〉 :=
∫

[−π,π]
〈
F(ξ),G(ξ)

〉

2(Z)

dξ . (6)

The map

τ : L2(R) → L2([−π,π], 
2(Z)
)
,

defined for f ∈ L2(R) and ξ ∈ [−π,π], by τf (ξ) = (f̂ (ξ + 2πk))k∈Z, is an isomet-
ric isomorphism up to multiplication by 1/(2π)1/2, where the Fourier Transform is
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defined for g ∈ L1(R) ∩ L2(R) by

ĝ(ξ) =
∫

R

g(x)e−ixξ dx.

Consider also the Hilbert space L2
per(R, 
2(Z)) of measurable vector-valued functions

F : R → 
2(Z) such that F |[−π,π] belongs to L2([−π,π], 
2(Z)) and is periodic in
the following sense:

F(ξ + 2πk) = λ(k)∗F(ξ) for all k ∈ Z, ξ ∈ R.

The scalar product is defined again as in (6). The corresponding map

τper : L2(R) → L2
per

(
R, 
2(Z)

)

is defined, for f ∈ L2(R) and ξ ∈ R, by τperf (ξ) = (f̂ (ξ + 2πk))k∈Z, and verifies
the periodicity condition

τperf (ξ + 2πh) = (
f̂ (ξ + 2πk + 2πh)

)
k∈Z

= λ(k)∗τperf (ξ).

The following theorem, due to Helson [7], characterizes SI space in terms of the
periodic range function:

Theorem 3.1 A closed subspace V ⊂ L2(R) is SI if and only if

V = {
f ∈ L2(R) | τperf (ξ) ∈ Jper(ξ) for a.e. ξ ∈ R

}
,

where Jper is a measurable periodic range function.
The correspondence between V and Jper is bijective under the convention that

range functions are identified if they are equal a.e. Furthermore, if V = S(Φ) for
some countable Φ ⊂ L2(R) then, for a.e. ξ ∈ R,

Jper(ξ) = span
{
τperϕ(ξ) | ϕ ∈ Φ

}
.

Definition 3.2 If V is an SI subspace of L2(R), then Jper associated with V as in
Theorem 3.1 is called the periodic range function of V .

It is necessary now to recall the definition of a frame.

Definition 3.3 A subset {ei |i ∈ I } of a Hilbert space H is called a frame with con-
stants b,B > 0, if

b‖f ‖2 ≤
∑
i∈I

∣∣〈ei, f 〉∣∣2 ≤ B‖f ‖2 for all f ∈ H.

If b = B = 1, it is called a normalized tight frame (NTF).
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Definition 3.4 Let V be a shift invariant subspace of L2(R). A subset Φ of V is
called a normalized tight frame generator (NTF generator) for V if the set of translates

{Tkϕ | k ∈ Z, ϕ ∈ Φ}
is an NTF for V .

Theorem 3.5 Let V be an SI subspace of L2(R), Jper its periodic range function,
and Φ a countable subset of V .

{Tkϕ | ϕ ∈ Φ,k ∈ Z} is a frame with constants b and B for V if and only if
{τperϕ(ξ) | ϕ ∈ Φ} is a frame with constants b and B for Jper, for a.e. ξ ∈ R.

The notion of the local trace function is based on the notion of the trace of a positive
operator on a Hilbert space. We refer the reader to the work of Dutkay [4] for a survey
on the trace function.

Definition 3.6 Let H be a Hilbert space and T a positive operator on H . The trace
of T is the positive number (it could be +∞) defined by

Trace(T ) =
∑
i∈I

〈T ei, ei〉,

where {ei | i ∈ I } is an orthonormal basis for H .

Definition 3.7 Let V be an SI subspace of L2(R), T a positive operator on 
2(Z),
and let Jper(ξ) be the periodic range function of V . We define the local trace function
associated with V and T as the map

τV,T : R → [0,+∞)

defined by

τV,T (ξ) = Trace
(
T Jper(ξ)

)
, ξ ∈ R.

We define the restricted local trace function associated with V and f ∈ 
2(Z) by

τV,f (ξ) = Trace
(
Pf Jper(ξ)

) = τV,Pf
(ξ), ξ ∈ R,

where Pf is the operator on 
2(Z) defined by Pf (v) = 〈v,f 〉f.

The following theorem says that the local trace function can be calculated with
any NTF generator. This fact will be used in the proof of our main result: We shall
compute the local trace function in two different ways and the resulting quantities
will be obliged to be equal.

Theorem 3.8 Let V be an SI subspace of L2(R), and Φ ⊂ V an NTF generator
for V. Then for every positive operator T on 
2(Z) and for every f ∈ 
2(Z), we have

τV,T (ξ) =
∑
ϕ∈Φ

〈
T τperϕ(ξ), τperϕ(ξ)

〉
, a.e. ξ ∈ R,

(7)
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τV,f (ξ) =
∑
ϕ∈Φ

∣∣〈f, τperϕ(ξ)
〉∣∣2

, a.e. ξ ∈ R.

4 Wavelet Packets as Generalized Shift-Invariant Systems

It is well known that a wavelet system is never Z-SI. Nevertheless, one can enlarge it
by adding more elements and construct a Z-SI system, called a quasi-affine system,
which shares most of the properties of the wavelet system. This object was studied
by Ron and Shen in [10] and further by Chui, Shi, and Stöckler in [2]. Generally
speaking, wavelet systems, and wavelet packet systems as well (WP for short), are
generalized shift-invariant systems (GSI for short) in the sense of Ron and Shen work
[11], and in this general context the analog of a quasi-affine system is the so-called
oblique oversampling [11].

In this section we consider our example of WP system X (2), and we shall con-
struct an oblique oversampling of it. Under the hypothesis that X is an orthonormal
basis of L2(R), we shall show that the oblique oversampling is a normalized tight
frame for L2(R). A crucial role in this is played by part (2) of Theorem 2.2 based on
our choice of E and thus of A. This fact will allow us to supply each V0 and W0 with
another Z-SI NTF different from the one inherited from the wavelet structure.

For the sake of clarity and simplicity we recall definitions and results of [11] in
one dimension and we show how our WP system fits into this scheme, but the same
argument can be extended to any WP system. We emphasize that the case of WP
systems is not included among the special types of GSI systems discussed in [11]. In
what follows, X will always denote our WP system defined in (2).

Definition 4.1 Let J be a countable index set. For any j ∈ J, let Γj = cjZ, where
cj is a nonzero, positive real number. Set L = (Γj )j∈J . For any j ∈ J assume there
is an associate function ϕj ∈ L2(R), and consider

Yj = {
ϕj (· + γ ) | γ ∈ Γj

}
.

The union

Y =
⋃
j∈J

Yj ,

is called a generalized shift-invariant (GSI) system. Sometimes we shall write J (Y)

for the index set.

Remark 1 WP system X = {2q/2wn(2qx − k) | k ∈ Z, (n, q) ∈ E}, is a GSI system.
Indeed, let us take as index set J = E, and for any (n, q) ∈ E, the lattice Γ(n,q) =
2−q

Z, and associate function ϕ(n,q) = D2q wn, so

Y(n,q) = {
ϕ(n,q)

(· − 2−qk
) | 2−qk ∈ 2−q

Z
} = {

2q/2wn

(
2q · −k

) | k ∈ Z
}
.

X is a nested GSI system, in the following sense. Let us define a total ordering on
E ⊂ N × Z as (n, q) ≤ (n′, q ′) if and only if either q < q ′, or, in the case q = q ′,
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n ≤ n′. We have

(n, q) ≤ (n′, q ′) ⇐⇒ 2−q ′ ≤ 2−q ⇐⇒ 2−q
Z ⊂ 2−q ′

Z.

Definition 4.2 Let Y = ⋃
j∈J Yj and Y0 = ⋃

j∈J Y 0
j be two GSI systems with the

same index set J . Let ϕj and ϕ0
j be the relative associate functions. We say that Y0

is an oversampling of Y if for every j ∈ J the following holds:

(1) The lattice c0
jZ (of the layer Y 0

j ) is a superlattice of cjZ;
(2) The following relation holds:

ϕ0
j =

(
c0
j

cj

) 1
2

ϕj .

If Y is nested we say that the oversampling is oblique if there exists j ∈ J such that
for every j ∈ J ,

c0
j =

{
cj , j > j,

cj , j ≤ j .

Remark 2 Let us construct an oblique oversampling of X. We define

X0 =
⋃

(n,q)∈E

Y 0
(n,q),

where, if q ≥ 0, we take as associated function ϕ0
(n,q) = D2q wn, lattice Γ 0

(n,q) =
2−q

Z, and

Y 0
(n,q) = {

2q/2wn

(
2qx − k

) | (n, q) ∈ E,q ≥ 0, k ∈ Z
}
,

while, if q < 0, we take as associated function ϕ0
(n,q) = 2q/2D2q wn, lattice Γ 0

(n,q) =
Z, and

Y 0
(n,q) = {

2qwn

(
2q

(
x − k

)) | (n, q) ∈ E,q < 0, k ∈ Z
}
.

It is easy to see that, in both cases, Γ 0
(n,q) is a superlattice of Γ(n,q) = 2−q

Z. The
equality (2) is also satisfied, since, if q < 0,

ϕ0
(n,q)(x) = 2qwn

(
2qx

) =
(

1

2−q

) 1
2

2q/2wn

(
2qx

) =
(

1

2−q

) 1
2

ϕ(n,q),

the other case being trivial.
The oversampling is oblique, with respect to the total ordering of E, since for

every (n, q) ∈ E,

Γ 0
(n,q) =

{
2−q

Z = Γ(n,q), (n, q) > (n,0),

Z = Γ(n,0), (n, q) ≤ (n,0).
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Finally the oversampling is tailless, which means (in one dimension) that the set of
all different numbers in the set {2−q, q ≥ 0} is bounded and has no accumulation
points other then 0. (See Definition 2.18 in [11].) This fact will be useful later, see
Proposition 4.7. Note also that the WP we start with is not tailless.

The main object of the study of GSI systems in [11] is the dual Gramian. In the
case of X it specializes as G̃ : R × R → C,

G̃(ξ, η) =
∑

(n,q)∈κ(ξ−η)

D2−q ŵn(ξ)D2−q ŵn(η)

|Γ(n,q)|

=
∑

(n,q)∈κ(ξ−η)

2qD2−q ŵn(ξ)D2−q ŵn(η),

where |Γ(n,q)| = 2−q and the valuation function κ is defined as

κ(ξ) := {
(n, q) ∈ E | ξ ∈ 2π2q

Z
}
. (8)

In other words, for a fixed ξ ∈ R, G̃(ξ, η) = 0 unless η lies in the countable set
ξ + ⋃

(n,q)∈F (2π2q
Z), and if this is the case for a certain (m,p) ∈ E and k ∈ Z,

G̃
(
ξ, ξ + 2π2pk

) =
∑

(n,q)∈E,2q |2pk

ŵn

(
2−qξ

)
ŵn

(
2−qξ + 2π2p−qk

)
.

Another important tool is the diagonal function, and for X it becomes

g̃(ξ) = G̃(ξ, ξ) =
∑

(n,q)∈E

∣∣ŵn

(
2−qξ

)∣∣2
,

since κ(0) = {(n, q) ∈ E | 0 ∈ 2π2q
Z} = E.

It is needless to say that the above objects could be defined for any wavelet packet
system, with the obvious changes, as it is for the following lemma, which says that
the diagonal function is a.e. bounded (by Schwarz’s inequality the dual Gramian is
bounded, too).

Lemma 4.3 For almost all ξ ∈ R,

g̃(ξ) =
∑

(n,q)∈E

∣∣ŵn

(
2−qξ

)∣∣2 ≤ 1.

Proof The proof follows from the observation that the diagonal function is related
to the spectral function σΓ

V defined by Bownik and Rzeszotnik in the following way
(see Lemma 2.5 in [1]). If we take Wn,q and Γq = 2−q

Z, then

g̃(ξ) =
∑

(n,q)∈E

∣∣ŵn

(
2−qξ

)∣∣2 =
∑

(n,q)∈E

σ
Γq

Wn,q
(ξ).
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Now for any finite set G in E let us denote V = ⊕
(n,q)∈G Wn,q . By (b) and (d) in

Proposition 2.8 [1],

∑
(n,q)∈G

σ
Γq

Wn,q
(ξ) = σV (ξ) ≤ σZ

L2(R)
(ξ) = 1,

so, by unconditional convergence the result follows. �

The previous lemma and Theorem 2.2 yield, for the specific choice of X, the next
crucial identity.

Corollary 4.4 Let us consider the wavelet packet system X. Then for almost all
ξ ∈ R,

g̃(ξ) =
∑

(n,q)∈E

∣∣ŵn

(
2−qξ

)∣∣2 = 1.

The above equality relates to the so-called discrete Calderón condition. For an or-
thonormal wavelet system (where a finite number of mother wavelets occurs) it is
equivalent to completeness in L2(R), see the work by Hernández, Labate, and Weiss
[8] and references therein. What fails in our case is the fact that there is no lattice
Γ which makes the direct sum

⊕
(n,q)∈E Wn,q a Γ shift invariant space, nor does

the wavelet packet system yet verify the local integrability condition (2.6) in Corol-
lary 4.4 in [8].

Remark 3 The dual Gramian of the GSI X0 is G̃X0 : R × R → C,

G̃X0(ξ, η) =
∑

(n,q)∈κ0(ξ−η)

ϕ̂0
(n,q)(ξ)ϕ̂0

(n,q)(η)

|Γ 0
(n,q)|

=
∑

(n,q)∈κ0(ξ−η)

2qD2−q ŵn(ξ)D2−q ŵn(η),

since |Γ 0
(n,q)| is either 2−q , q ≥ 0, or 1, q < 0, and the valuation function κ0 is

κ0(ξ) = {
(n, q) ∈ E | q ≥ 0, ξ ∈ 2π2q

Z
} ∪ {

(n, q) ∈ E| | q < 0, ξ ∈ 2πZ
}
.

Corollary 4.5 (cf. Proposition 3.9 in [11]) Let us consider the wavelet packet system
X and its oblique oversampling X0. Let κ and κ0 be the corresponding valuation
functions given by (8). Then:

(1) G̃X(ξ, η) = G̃X0(ξ, η) whenever κ(ξ − η) = κ0(ξ − η);
(2) g̃X(ξ) = g̃X0(ξ) = 1.

We shall now assume that X is an orthonormal basis for L2(R), and we shall show
that the (tailless) oblique oversampling X0 is a normalized tight frame (for L2(R)).
In order to do so, we need only to prove that X0 is a Bessel system with Bessel bound
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≤1. This follows from the above corollary and the following results in [11] applied
to X and X0.

Proposition 4.6 ([11], Corollary 1.14) Let Y be a GSI Bessel system with Bessel
bound ≤1. Let G̃ be the associated dual Gramian and g̃ the associated diagonal
function. Then:

If g̃ ≥ 1 a.e., then G̃(ξ, η) = 0, for a.e. ξ and every η, η �= ξ.

Proposition 4.7 (cf. [11], Corollary 3.7) Let Y be a tailless GSI system. Then Y is
a normalized tight frame if and only if Y is scalar, which means there is a null set
N ⊂ R such that G̃Y(ξ, η) = δξ,η for every ξ, η ∈ R\N .

In order to show that X0 is a Bessel system with Bessel bound ≤1 we need first
the notion of “dominance,” (see Definition 3.14 in [11]) which requires, more or less,
that the dual Gramian G̃Y coincides with G̃Y0 at all the entries which are involved
in the Bessel and frame properties of Y0. Since in our case the intersection of all
lattices associated to X0,

⋂
j∈J (X0) Γ

0
j is the 1-dimensional lattice Z, we can slightly

simplify the definition as follows:

Definition 4.8 Let Y and Y0 be two GSI systems. Let Γj , j ∈ J (Y0), be the lattices
associated to Y0. Assume that Γ0 = ⋂

j∈J (Y0) Γj is a 1-dimensional lattice.

We say that Y dominates Y0 if there exists a null set N ⊂ R such that G̃Y(ξ, η) =
G̃Y0(ξ, η) whenever (ξ − η) · γ ∈ 2πZ for any γ ∈ Γ0 and ξ ∈ R\N .

Lemma 4.9 X dominates the oblique oversampling X0.

Proof Since X0 is Z-shift invariant, by Corollary 4.5 it suffices to show the equality
κ(ξ − η) = κ0(ξ − η) whenever (ξ − η) · γ ∈ 2πZ for any γ ∈ Z, which means
κ(2πr) = κ0(2πr) for any r ∈ Z. But this follows easily from the choice of lattices
in X0. Indeed, since r ∈ Z,

κ(2πr) = {
(n, q) ∈ E | r ∈ 2q

Z
}

= {
(n, q) ∈ E | q ≥ 0, r ∈ 2q

Z
} ∪ {

(n, q) ∈ E | q < 0
}
,

while, by definition, κ0(2πr) equals to

{
(n, q) ∈ E | q ≥ 0, r ∈ 2q

Z
} ∪ {

(n, q) ∈ E | q < 0, r ∈ Z
}
. �

Since X0 is tailless and dominated by X, it follows that in order to show that X0

is Bessel we need to control, in a certain way, the Gramian of X. The following
definition presents a tool to do so.

Definition 4.10 Let Y be a GSI system. Given a finite P ⊂ R we denote by G̃(P ) the
submatrix of G̃ whose rows and columns are indexed by P and whose (p, q)-entry
is G̃(p, q), p, q ∈ P. We denote by G(P ) the norm of the matrix G̃(P ) viewed as
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an endomorphism of 
2(P ). If any of the entries of G̃(P )is not well defined or is not
finite, we define G(P ) = +∞.

We say that G is bounded by A > 0 if, for every finite P ⊂ R,

∥∥G(· + P)
∥∥

L∞(R)
≤ A.

We call G = GY the norm function of Y.

Theorem 4.11 (cf. Theorem 2.14, and 3.4 [11]) Let Y be a GSI system associated
with a norm function G . If Y is Bessel with Bessel bound A, then G is bounded by A.

Moreover, if Y is tailless the converse is also true.

Corollary 4.12 Let us assume that X is an orthonormal basis. Then GX is bounded
by 1.

Proposition 4.13 (cf. Proposition 3.15, [11]) Let Y, Y0 be GSI systems. Assume that
Y0 is tailless and that Y dominates Y0. If Y is Bessel, then Y0 is Bessel too, and its
Bessel bound is no larger than that of Y.

Proof The proof follows the first part of the proof of Proposition 3.15, [11], (at this
stage of the proof Y is not required to have small tails), and we get that, by dominance,
GY0 is bounded by the Bessel bound A of Y. By Theorem 4.11 applied to Y0, we
obtain the thesis. �

Corollary 4.14 Let us assume that X is an orthonormal basis. Then X0 is a normal-
ized tight frame for L2(R).

Corollary 4.15 Let us assume that X is an orthonormal basis. Then, for any fixed
m ∈ N, the system

{
2qwn

(
2q(x − k)

) | (n, q) ∈ E,Wn,q ⊆ Wm,0, k ∈ Z
}

is an NTF for the subspace Wm,0.

Proof It follows from the previous corollary and the orthonormality of the spaces
Wn,q and Wm,0 for Wn,q � Wm,0. �

5 Measures Associated to Wavelet Packets

In this section we summarize the properties of the continuous measures induced by
the wavelet packet algorithm on the Borel sets of [0,1) (see [3] for definition and
details) as they appear in [14].

The measure μk is first defined in any dyadic interval as follows. Let

I n
j =

[
ε1

2
+ ε2

4
+ · · · + εj

2j
,
ε1

2
+ ε2

4
+ · · · + εj

2j
+ 1

2j

)
⊂ [0,1),
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where n = ε1 + 2ε2 + · · · + 2j−1εj , and εi = 0,1. Let us define

μk

(
I n

j

) = 2j
∑
p∈Z

∣∣∣∣
∫ 2π

0
mε1(θ)mε2(2θ) . . .mεj

(
2j−1θ

)
e−ikθ ei2j pθ dθ

2π

∣∣∣∣
2

. (9)

The occurrence of the symbols m0 and m1 reflects the position of the interval.
μk extends to a regular continuous Borel measure and its value in dyadic intervals

is linked to wavelet packets wn as shown in the following theorem:

Theorem 5.1 Let n = ε1 + 2ε2 + · · · + 2j−1εj . Consider

I n
j =

[
ε1

2
+ ε2

4
+ · · · + εj

2j
,
ε1

2
+ ε2

4
+ · · · + εj

2j
+ 1

2j

)
=

[
n

2j
,
n + 1

2j

)
,

where we set n = εj + 2εj−1 + · · · + 2j−1ε1.

Then:

(1) If n is even (ε1 = 0), then

μk

(
I n

j

) = 1

2j

∑
p∈Z

∣∣∣∣wn

(
p − k

2j

)∣∣∣∣
2

.

(2) If n is odd (ε1 = 1), then

μk

(
I n

j

) = 1

2j

∑
p∈Z

∣∣∣∣wn−2j−1

(
p − (k − 1)

2j

)∣∣∣∣
2

.

(3) For any measurable set Ω ⊂ [0, 1
2 ), we have

μ2k

(
Ω

2

)
= 1

2
μk(Ω).

(4) For any measurable set Ω ⊂ [0,1), we have

μk

(
Ω

2

)
= μk+1

(
Ω + 1

2

)
.

Remark 4 Note that, from the definition of the measures μk , the following relations
are always true for any dyadic interval of length 1/2j :

2j −1∑
k=0

μk(I) = 1, μk+2j (I) = μk(I). (10)

In particular we can deduce the following values for the Lemarié–Meyer wavelet ψ

and the scaling function ϕ:

∑
p∈Z

∣∣ψ(p)
∣∣2 =

∑
p∈Z

∣∣ϕ(p)
∣∣2 = 1 + 4a,

∑
p∈Z

∣∣∣∣ϕ
(

p + 1

2

)∣∣∣∣
2

= 1 − 4a, (11)
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where

a = 1

2π

∫ 2π
3

π
3

m0(θ)m0(θ + π)dθ > 0.

6 Final Calculations

The overlapped region between m0(θ) and m0(θ + π) is responsible for (11). Thus
none of the measures μk is the Lebesgue measure. As we shall see, however, the
existence of another NTF will force the same measures to behave like that, yielding
a contradiction.

Theorem 6.1 Consider the Lemarié–Meyer wavelet and the corresponding wavelet
packet system

X = {
2q/2wn

(
2qx − k

)
, k ∈ Z, (n, q) ∈ E

}
,

where E = ⋃
M∈N

EM, and

E0 =
{

(n, q) ∈ N × Z | q = −2p,p ∈ N
∗, n =

2p∑
h=1

εh2h−1, ε1 = 0,

ε2i+1 = 1, i = 1, . . . , p − 1

}
,

E1 = {(
n + 2−q, q

) ∈ N × Z | (n, q) ∈ E0
}
,

EM = {
(M,0)

}
, M ≥ 2.

Then X is not an ONB of L2(R).

Proof The proof is obtained by reductio ad absurdum.
Let us assume that the wavelet packet X is an ONB for L2(R) and consider the

corresponding oblique oversampling X0. Then, by Corollary 4.15, we know that the
system {

2qwn

(
2q(x − k)

) | (n, q) ∈ E0, q < 0, k ∈ Z
}

is an NTF for the subspace W0,0 = V0 and the system
{
2qwn

(
2q(x − k)

) | (n, q) ∈ E1, q < 0, k ∈ Z
}

is an NTF for the subspace W1,0 = W0.

In other words, {2q/2D2q wn|(n, q) ∈ E0, q < 0} is an NTF generator for V0, while
{2q/2D2q wn|(n, q) ∈ E1, q < 0} is an NTF generator for W0, where the underlying
lattice is Γ = Z. So, by Theorem 3.8 (7), for any f ∈ 
2(Z),

τZ

V0,f
(ξ) =

∑
(n,q)∈E0

∣∣〈f, τper
(
2q/2D2q wn

)
(ξ)

〉∣∣2
, a.e. ξ ∈ R

n,
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and

τZ

W0,f
(ξ) =

∑
(n,q)∈E1

∣∣〈f, τper
(
2q/2D2q wn

)
(ξ)

〉∣∣2
, a.e. ξ ∈ R

n.

By definition,

τper
(
2q/2D2q wn

)
(ξ) = (

ŵn

(
2−q(ξ + 2πk)

))
k∈Z

.

On the other hand, the integer translates of ϕ and ψ form, respectively, an ONB for
V0 and W0, so, since the local trace function does not depend on the choice of the
NTF generator, we have the equalities, for any f ∈ 
2(Z),

∑
(n,q)∈E0

∣∣∣∣
∑
l∈Z

fl ŵn

(
2−q(ξ + 2πl)

)∣∣∣∣
2

= τZ

V0,f
(ξ) = ∣∣〈f, τper(ϕ)(ξ)

〉∣∣2

=
∣∣∣∣
∑
l∈Z

fl ϕ̂(ξ + 2πl)

∣∣∣∣
2

,

and

∑
(n,q)∈E1

∣∣∣∣
∑
l∈Z

fl ŵn

(
2−q(ξ + 2πl)

)∣∣∣∣
2

= τZ

W0,f
(ξ) = ∣∣〈f, τper(ψ)(ξ)

〉∣∣2

=
∣∣∣∣
∑
l∈Z

fl ψ̂(ξ + 2πl)

∣∣∣∣
2

.

Since the above equalities hold for any f ∈ 
2(Z), they imply

∣∣∣∣
∑
r∈Z

ϕ̂(ξ + 2πr)

∣∣∣∣
2

=
∑

(n,q)∈E0

∣∣∣∣
∑
r∈Z

ŵn

(
2−q(ξ + 2πr)

)∣∣∣∣
2

and ∣∣∣∣
∑
r∈Z

ψ̂(ξ + 2πr)

∣∣∣∣
2

=
∑

(n,q)∈E1

∣∣∣∣
∑
r∈Z

ŵn

(
2−q(ξ + 2πr)

)∣∣∣∣
2

.

The next step consists of applying the Poisson summation formula to each sum (recall
that ϕ, ψ, wn are in the Schwartz class), thus obtaining

∣∣∣∣
∑
r∈Z

ϕ(r)e−irξ

∣∣∣∣
2

=
∑

(n,q)∈E0

∣∣∣∣ 1

2−q

∑
r∈Z

wn

(
r

2−q

)
e−irξ

∣∣∣∣
2

and ∣∣∣∣
∑
r∈Z

ψ(r)e−irξ

∣∣∣∣
2

=
∑

(n,q)∈E1

∣∣∣∣ 1

2−q

∑
r∈Z

wn

(
r

2−q

)
e−irξ

∣∣∣∣
2

.
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If we integrate between 0 and 2π , we get

∑
r∈Z

∣∣ϕ(r)
∣∣2 =

∑
(n,q)∈E0

1

2−2q

∑
r∈Z

∣∣∣∣wn

(
r

2−q

)∣∣∣∣
2

(12)

and

∑
r∈Z

∣∣ψ(r)
∣∣2 =

∑
(n,q)∈E1

1

2−2q

∑
r∈Z

∣∣∣∣wn

(
r

2−q

)∣∣∣∣
2

. (13)

The left-hand sums are given in (11), and they are equal to 1 + 4a each. The right-
hand sums are linked to measures μs, associated to wavelet packets (see (9)), and
their values in dyadic intervals are determined by the pairs (n, q) ∈ E0 ∪ E1. Indeed,
by our choice of E0 and E1, the right-hand side of (12) and (13) are, respectively,
equal to

∑
(n,q)∈E0

1

2−2q

2−q−1∑
s=0

∑
r∈Z

∣∣∣∣wn

(
r − s

2−q

)∣∣∣∣
2

and

∑
(n,q)∈E0

1

2−2q

2−q−1∑
s=0

∑
r∈Z

∣∣∣∣wn+2−q

(
r − s

2−q

)∣∣∣∣
2

.

We now treat the two sums above singularly. We emphasize that the following calcu-
lations heavily depend on the nature of E and thus of A. Let us begin with the first
one.

If (n, q) ∈ E0, then q = −2p, p ∈ N, and

n = ε1 + 2ε2 + · · · + 22p−1ε2p, ε1 = 0, ε2i+1 = 1, i = 1, . . . , p − 1.

Set

Ωn,p =
[

n

22p
,
n + 1

22p

)
.

If ε2p = 0, then n = ε2p + 2ε2p−1 + · · ·+ 22p−1ε1 is even. Also we note that, for our
choice of E0, since ε1 = 0, n + 1 cannot be larger then 22p−1, so Ωn,p ⊂ [0, 1

2 ), and
by Theorem 5.1,

μs(Ωn,p) = 2μ2s

(
Ωn,p

2

)
,

so we get

∑
r∈Z

∣∣∣∣wn

(
r − s

2−q

)∣∣∣∣
2

=
∑
r∈Z

∣∣∣∣wn

(
r − s

2−q

)∣∣∣∣
2

= 22pμs

([
n

22p
,
n + 1

22p

))

= 22pμs(Ωn,p) = 22p+1μ2s

(
Ωn,p

2

)
.
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On the other hand, if ε2p = 1, then we can write n = ε1 + 2ε2 + · · · + 22p−1ε2p +
22p · 0, and so n = 0 + 2ε2p + 22ε2p−1 + · · · + 22p−1ε2 + 22pε1 is even and by
Theorem 5.1, we have again

∑
r∈Z

∣∣∣∣wn

(
r − s

2−q

)∣∣∣∣
2

=
∑
r∈Z

∣∣∣∣wn

(
r − 2s

2−q+1

)∣∣∣∣
2

= 22p+1μ2s

([
n

22p+1
,

n + 1

22p+1

))

= 22p+1μ2s

(
Ωn,p

2

)
.

Therefore, substituting in equality (12), we obtain

1 + 4a =
∑

(n,−2p)∈E0 p∈N∗

1

22p−1

22p−1∑
s=0

μ2s

(
Ωn,p

2

)
.

Let us proceed with the second sum.
This time n+22p = ε1 +2ε2 +· · ·+22p−1ε2p +22p +22p+1 ·0, and so n + 22p =

0 + 2 + 22ε2p + · · · + 22pε2 + 22p+1ε1 is even, hence by Theorem 5.1, we have

∑
r∈Z

∣∣∣∣wn+22p

(
r − s

22p

)∣∣∣∣
2

=
∑
r∈Z

∣∣∣∣wn+22p

(
r − 2s

22p+1

)∣∣∣∣
2

= 22p+1μ2s

([
n + 22p

22p+1
,
n + 22p + 1

22p+1

))

= 22p+1μ2s

([
n + 22p

22p+1
,
n + 22p + 1

22p+1

))
.

Now we note that the interval

I =
[
n + 22p

22p+1
,
n + 22p + 1

22p+1

)
= 1

2

([
n

22p
,
n + 1

22p

)
+ 1

)
= 1

2
(Ωn,p + 1),

so by Theorem 5.1,

μ2s

([
n + 22p

22p+1
,
n + 22p + 1

22p+1

))
= μ2s

(
Ωn,p + 1

2

)
= μ2s−1

(
Ωn,p

2

)
.

Therefore, substituting in equality (13), we obtain

1 + 4a =
∑

(n,−2p)∈E0 p∈N∗

22p−1∑
s=0

1

22p−1
μ2s−1

(
Ωn,p

2

)
.
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Finally we add term by term the two equalities, thus obtaining, by properties (10) of
μs, since for any fixed p the number of elements (n,−2p) ∈ E0 is 2p ,

2 + 8a =
∑

(n,−2p)∈E0,p∈N∗

1

22p−1

22p−1∑
s=0

{
μ2s

(
Ωn,p

2

)
+ μ2s−1

(
Ωn,p

2

)}

=
∑

(n,−2p)∈E0,p∈N∗

1

22p−1

22p+1−1∑
s=0

μs

(
Ωn,p

2

)

=
∑

(n,−2p)∈E0,p∈N∗

1

22p−1
· 1

=
+∞∑
p=1

1

22p−1
· 2p

= 2,

and the contradiction a = 0. �
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