Let F be an algebraic closed field of characteristic zero and G a cyclic group of odd prime order. We consider the class of finite dimensional (G, ∗)-algebras, namely G-graded algebras endowed with graded involution ∗, and we characterize the affine varieties of (G, ∗)-algebras which are minimal respect to the (G, ∗)-exponent by elements of this class

Minimal varieties of PI-algebras with graded involution

Di Vincenzo, O. M.;
2024-01-01

Abstract

Let F be an algebraic closed field of characteristic zero and G a cyclic group of odd prime order. We consider the class of finite dimensional (G, ∗)-algebras, namely G-graded algebras endowed with graded involution ∗, and we characterize the affine varieties of (G, ∗)-algebras which are minimal respect to the (G, ∗)-exponent by elements of this class
2024
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0024379524003008-main.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Versione editoriale
Dimensione 765.13 kB
Formato Adobe PDF
765.13 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/192115
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact