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1. Introduction

Let F be a field of characteristic zero and F(X) be the free associative algebra on a
countable set X over F. One of the most interesting problems in PI-theory is that of
finding numerical invariants allowing to classify the T-ideals of F(X), i.e. the ideals
invariant under all endomorphisms of F(X). There is a well understood connection
between T-ideals of F'(X) and Pl-algebras: every T-ideal is the ideal of polynomial
identities satisfied by a given F-algebra. If A is an associative Pl-algebra over F, i.e.
an algebra satisfying a non-trivial polynomial identity, a very useful numerical invariant
that can be attached to Id(A), the T-ideal of identities of A, is given by the sequence of
codimensions {c,,(A4)},>1. Such numerical sequence was introduced by Regev in [29] and
measures in some sense the rate of growth of the multilinear polynomials lying in Id(A).
Regev proved that if A satisfies a non-trivial polynomial identity then its sequence of
codimensions is exponentially bounded. Later Giambruno and Zaicev (see [17] and [18])
captured the exponential growth of this sequence showing that, the exponent of A,

exp(A) := limy, 00 v/ en(A)

exists and is a non-negative integer. Afterwards the same approach has been applied
to study the corresponding polynomial identities of algebras endowed with additional
structures such as superalgebras, group graded algebras, algebras with involution, graded
algebras with involutions. Besides their own interesting features, the main motivations
for this type of work are the important information on fairly general issues that the
additional structure and related objects may provide. For instance this is the case for
the solution of the Specht problem due to Kemer (see [25]) in which Z,-gradings play a
fundamental role.

In this paper we deal with (G, x)-algebras, namely associative algebras graded by a
finite abelian group G and endowed with a graded involution *, and the growth of their
(G, x)-codimensions. If A is a Pl-algebra, it follows from the literature, for instance see
[21, Lemma 10.1.3], that the sequence {cﬁLG’*)(A)}nzl of (G, *)-codimensions is exponen-
tially bounded, moreover, as in the ordinary case, the existence of the (G, x)-exponent
has been confirmed in [22] in the finite-dimensional case. Obviously this statement ap-
plies to commutative graded algebras (which can be seen as (G, *)-graded algebras with
trivial involution) and algebras with involutions (which are nothing but (G, x)-graded
algebras endowed with trivial grading), but it was independently proved for PI-algebras
graded by a finite group in [1] and for x-PI algebras with involution- in [16] without fur-
ther restrictions. In particular, the last mentioned paper is based on the Representability
Theorem as presented in [2], where a crucial role is just played by superinvolutions and
graded involutions of a superalgebra. More precisely, any Pl-algebra with involution is
*-PI equivalent to the Grassmann envelope G(A) = A®F of a finite dimensional superal-
gebra A equipped by some superinvolution . Notice that the involution on G(A) induced
by * and by the parity automorphism of F is indeed a graded involution. Superalgebras
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endowed with a superinvolution play a natural and relevant role in the Theory of Lie and
Jordan superalgebras [24], [28] and have recently become a subject of increasing interest
and extensive investigations in PI-Theory (see [23], [15], [9]).

In this context the previous results represent the most significant developments of the
quantitative investigation of the corresponding polynomial identities satisfied by algebras
in these classes. The important feature of the existence of the exponent is that it provides
a measure of the growth of any variety: in particular, it allows to classify varieties on an
integral scale whose steps are the minimal varieties of given exponent d, namely those
varieties of exponent d such that every proper subvariety has exponent strictly less than d.
A deep outcome in this direction is obtained in [20] with the characterization of minimal
varieties of given exponent d. Previously the same authors in [19] proved that a variety
of Pl-algebras of finite basic rank or affine variety, i.e. generated by a finitely generated
algebra, is minimal if it is generated by an upper block triangular matrix algebra. Along
this line in [10] the minimal varieties of finite-dimensional algebras with involution were
completely described. Sviridova proved that actually any affine *-variety can be generated
by a finite dimensional x-algebra [31]. In [12] the authors characterized minimal varieties
of C,-graded PI-algebras in the affine case, where C,, is a cyclic group of order a prime p.
Recently the classification of minimal affine varieties of PI x-superalgebras was obtained
in [13].

In this paper we consider the varieties of (C,, *)-algebras for an odd prime p: our goal
is the classification of those which are minimal of a given exponent. It is proved that a
variety of (C,, *)-algebras generated by a finite dimensional (C,, *)-algebra is minimal of
fixed exponent if and only if it is generated by an upper block triangular matrix algebra
equipped with a suitable elementary grading and graded involution (see Theorem 6).

2. Algebras with graded involution and polynomial identities

Let F be a field of characteristic zero and G a finite group. Throughout this paper all
algebras are assumed to be associative and to have the same ground field F' so we will
normally drop the word associative in what follows.

An algebra A is a G-graded algebra if A can be written as a direct sum of vector
spaces A = @gEG Ay such that AjA, C Agp, for all g,h € G. The subspaces A,
are called homogeneous components of A of degree g and an element a € A, is called
homogeneous of degree g, we denote its degree by |a|4 = g.

A subspace V' of A is graded if V = @ q(V N A4y). Similarly, we define graded
subalgebras and ideals of A.

Recall that an involution * on an algebra A is an antiautomorphism of A of order at
most two. An algebra A endowed with an involution * is called a *-algebra. In this case
we write A = AT @ A~ where AT = {a € A|a* = a} and A~ = {a € A|a* = —a}
denote the subspaces of symmetric and skew-symmetric elements of A, respectively.

Given a G-graded algebra A =P,
is a graded involution if it preserves the homogeneous components of 4, i.e. if A7 C Ay,

A, endowed with an involution *, we say that
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for all ¢ € G. A G-graded algebra endowed with a graded involution is called (G, *)-
algebra.

Moreover, for each g € G, we denote by A;r and A, the subspaces of symmetric
and skew-symmetric elements of A, respectively. We say that (g, ) is the type of the
homogeneous element a belonging to AZ, where p € {+, -}

An isomorphism of algebras ¢ : A — B from a (G, x)-algebra A to a (G, *)-algebra B
is an isomorphism of (G, )-algebras if ¢(A4,) C By, for all g € G, and ¢(a*) = ¢(a)*, for
all a € A. In this case, we say that A and B are isomorphic as (G, *)-algebras.

Let F(X¢) denote the free associative G-graded algebra on the countable set X¢

over F. Here the set X decomposes as X¢ = X4 the union of disjoint countable

G
sets Xy = {x1,4,22,4,...}, where g € G and the eglgments of X, have degree g. The free
algebra F'(X¢) has a natural G-grading F(Xg) = e Fy, where Fy is the subspace
spanned by the monomials x;, g, -, 4, of homogeneous degree g = gj, - gj,-

Let us now consider the free algebra with involution F(Xg,*) which is a (G, x)-algebra
if we assume also that, for each variable x; 4, 7 ; is homogeneouos of degree g. F(Xg, *)
is said to be the free (G, x)-algebra over F.

gn ) Tn,gn
=0 for all
Qi g, € Ag,,i=1,...,n. Inthis case we write f = 0 on A. The set of all (G, *)-polynomial
identities satisfied by A

If A=@,cqAg is a (G, x)-algebra, an element f = f(21,4,,27 ;-2 Tnyg,s Tp g, ) €

F(Xg,*) is a (G, *)-polynomial identity of Aif f(a14,,a7 4, ang,,0a )

Id5(A) = {f € F(Xg,#) | f=0onA}

is an ideal of F(X¢,*) called the ideal of (G, *)-identities of A. It is easy to show that
Idf,(A)is a T -ideal of F(Xq, %), i.e. a two-sided ideal of the free (G, x)-algebra invariant
under all endomorphisms of F(X¢, *) that preserve the G-structure and commute with
the graded involution *. Now, let

1) g1 'xa (n),9n
be the space of all multilinear (G, *)-polynomials of degree n. Since char F=0, standard
Vandermonde arguments and linearization process prove that Id}(A) is completely de-
termined by its multilinear polynomials, then the study of Id,(A) is equivalent to that
of P9 n Id},(A) for all n > 1. As in the ordinary case (see [29]), one defines the n-th
(G, x)-codimension of A as

P'rg,G,*)
45 (A) = dimp
P9 1dz,(A)

If A is a Pl-algebra, i.e. it satisfies an ordinary polynomial identity, it can be easily proved
that the relation between the ordinary codimensions ¢,(A) and the (G, *)-codimension
of A is given by the inequalities
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cn(A) < e (4) < 271G en(A),

hence the sequence {C%G’*)(A)}nzl is exponentially bounded.

A (G, x)-algebra can be viewed as an algebra with a generalized F[G x Zz]-action,
where G X Zy acts on it by automorphisms and antiautomorphisms. If A is a finite
dimensional (G, %)-algebra, Gordienko in [22] captured its exponential growth proving
that the (G, %)-exponent of A

expl(A) = lim /&7 (4)
n—oo
exists and it is a non-negative integer.

He actually provides an explicit formula to compute the (G, *)-exponent which is a
natural generalization of that for the ordinary Pl-exponent. If A is a finite dimensional
(G, *)-algebra, since F' is a field of characteristic zero, Id(A) = Id&(AQp L)NF(X g, *)
for any extension field L of F' then also the (G, x)-codimensions of A do not change upon
extension of the base field. Hence we can assume that F' is algebraically closed. By the
generalization of the Wedderburn-Malcev Theorem, we can write

A:A1@~--®Am+J,

where Ay,..., A, are (G, x)-simple algebras, and J = J(A) is the Jacobson radical of A
which is a Tf-ideal. We recall that A is called (G, x)-simple algebra if A? # {0} and it
has no non-zero (G, *)-ideals.

We say that a subalgebra A;, @ --- @ A;, of A, where 4;,,..., A;, are distinct (G, *)-
simple components, is admissible if for some permutation (I1,...,0) of (i1,...,ix) we
have that A;, J---JA;, # 0. Moreover, if 4;, ®---® A;, is an admissible subalgebra of
Athen A" =A; &--- @ A;, + J is called a reduced (G, x)-algebra.

The notion of admissible (G, *)-algebra is closely linked to that of (G, *)-exponent in
fact, in [22], it was proved that exp{;(A) = d where d is the maximal dimension of an
admissible subalgebra of A. It follows immediately that

Remark 1. If A is a (G, *)-simple algebra then exp}(A) = dimp A.

It is often more useful to study (G, %)-algebras up to Pl-equivalence, then it is con-
venient to use the language of varieties. Let I be a Tf-ideal of F(Xg,*) and V the
variety of (G, *)-algebras associated to I, i.e. the class of all (G, *)-algebras A such that
I is contained in Idg,(A). We put I = Idg, (V). Since Id}, (V) = I = Id},(A), for some
(G, *)-algebra A, we say that the variety V is generated by A and we write V = var{,(4),
expf (V) = expg(A) if expy (A) exists. We call expg, (V) the (G, *)-exponent of the variety
V.

To ensure the existence of the (G, *)-exponent, in this paper we consider only varieties
generated by finite dimensional (G, x)-algebras and we introduce the following definition:
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Definition 1. A variety V generated by a finite dimensional (G, *)-algebra is said to be
minimal of (G, *)-exponent d if

expe(V) =d and expi(U) < d
for every proper subvariety U of V generated by a finite dimensional (G, x)-algebra.

Our main purpose is to characterize the minimal varieties of (G, x)-algebras when G
is a finite group of order an odd prime p (see Theorem 6).

We emphasize that our result would hold in its full generality in the context of affine
varieties if a representability theorem for finitely generated (G, x)-algebras satisfying a
polynomial identity were proved.

More precisely, every finitely generated (G, *)-algebra satisfying a polynomial identity
would be equivalent to a finite-dimensional (G, x)-algebra (representability theorem). All
subvarieties of an affine variety would themselves be affine, and consequently would be
generated by a finite-dimensional (G, *)-algebra. This is precisely the case in which G
has order 2 (see [15, Theorem 5.3]).

However, since the validity of this representability theorem has not yet been confirmed,
in this paper we preferred to state our result only for varieties generated by finite-
dimensional (G, *)-algebras as specified above and in Theorem 6.

3. Elementary gradings on matrix algebras and graded involutions

In this section, we focus our study on the graded involutions on matrix algebras with
elementary gradings. Let us recall that the elementary gradings play a fundamental role
in the classification of all G-gradings on matrix algebras over an algebraically closed
field. Moreover, as a consequence of this classification, one has that when G is a finite
cyclic group and the field F is algebraically closed then any G-grading over M, (F) is
isomorphic to an elementary grading.

An explicit classification of graded involutions on matrix algebras was made by Bah-
turin and Zaicev in [8] (see also [7] and [4]). Here we present a different description of
their result in the case of elementary gradings that we will use for the classification of
finite dimensional (G, *)-simple algebras when G = C,, is finite of order an odd prime p.

We fix the notation throughout the paper: for any ring R and pair of positive integers
s and t let Msx+(R) denote the space of all matrices with s rows and ¢ columns over
R and set M (R) = M;xs(R). If R = F, we simply write M y; and My instead of
M+ (F) and M(F), respectively. Setting from now on, for every positive integers m, n
with m < n, [m,n] :=={m,m+1,...,n}, we denote by e;; the usual (¢, j)-matrix unit of
M,, i,7 € [1,n]. Also we indicate by I,, the n x n matrix identity of M,, and by .J, the
matrix of M,, with all ones in the secondary diagonal and zeros in the other entries
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0 0 1
1 0
Jn = € M,
0 1
1 0 0
Let us recall that a G-grading on M,, = gEG(M”>9 is an elementary grading if
there exists an n-tuple (g1,...,9,) € G" such that the matrix units e;;, i, j € [1,n], are

homogeneous and e;; € (M,,), if and only if g = g; ! g;. In an equivalent manner we have
the following

Definition 2. Let n be a positive integer, and let &, := {e;; | 1,4 € [1,n]} be the canonical
basis of matrix units of M,,. For any map « : [1,n] — G, we write o;; = (i) and define
leijla = a; ‘. The resulting grading on M, is called the elementary grading induced
by «.

We write (M,,, «) to denote the matrix algebra equipped with an elementary grading
induced by «a. Also we write (M, a, *) when x* is a graded involution on (M,, «).

In this section, if it is not explicitly stated, G is a finite abelian group. Before of
proceeding, recall some considerations and results on elementary gradings and multilinear
polynomials that we shall frequently use throughout the paper (see Section 2 of [11]).
First of all we recall:

Proposition 1. The algebras (M,,a) and (M, ) are graded isomorphic if and only if
there exist h € G and a permutation o in the symmetric group S, such that

Bo(i) = hoy for alli € [1,n)].
In this case the linear map
0: (Mp, ) — (M, 3) i — €q(i)o(5)
is the graded isomorphism and there exists a permutation-matriz C € M, such that
o(z) =CxC™"  forall x€ M,.

At the light of the previous proposition we say that o and 8 are equivalent and we
write o ~ 3 if and only if there exist h € G and ¢ € S, such that 3, = ha; for all
i€ [1,n].

Now, given « : [1,n] — G we denote by Z,, the image of «, that is Z,, = «([1,n]), we
consider the corresponding weight map w, : G — N defined by

wa(g) = |{Z‘ I <i<n, O‘(Z) = g}|
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and we define the invariance subgroup of « by
H, :={h|h € G, wa(hg) =wy(g) for all g € G}.

Clearly, a and (8 are equivalent if and only if there exists h € G such that wg(x) = wq (hz)
for all x € G. In this case we obtain H, = Hpg hence, given the matrix algebra A = M,
endowed with an elementary G-grading, we can define the invariance subgroup of A by
H, = H,, where « is any map inducing the grading.

Now let us consider the polynomials ®4 and ¥, introduced in [11], using a more
appropriate notation. More precisely, if « : [1,n] — G let § = (¢1,...,9,) be a fixed
sequence of all the elements of Z, in some order, we consider the derived sequence
(hi,...,hy_1) defined by hy = g; *g;41 for all t = 1,...,7 — 1 and the corresponding
weight vector m = (my,...,m;) = (Wa(g1),- -, Wa(gr)). Now, as pointed out in [11], if
A = (M, «) the definition of ®4 depends only on the sequence § = (g1,...,9,) and «
of course. In this paper we denote ® 4 as

®a7§ = (I)a,_?;(ylv s Yon—ry Ry - ZT‘—I) =

Stnl (yla s ayn1)zl Stnz (yn1+17 ce. 7yn1+n2)z2 crrRr—1 St"r (yn1+"'+n7‘—1+17 s 7y2n—7")7
where n = my+- - -+m, is the size of A, n; =2m;—1,foralli=1,....r,y1,...,Yy2n_, are
homogeneous variables of degree 14, whereas z1, ..., z._1 are homogeneous variables of

degree hi, ..., hy—1 respectively and Sty (z1,...,2¢) = > cg (=1)7T5(1) * - - To(s) denotes
the standard polynomial of degree t.

With the same notation, we consider the inverse order §* = (g,,...,g1) of the ele-
ments of Z,, so the derived sequence becomes (hr__ll, ey hl_l), the associated vector m*
is (my,...,m1) and the corresponding polynomial is ®q g« (Y1, ..., Ysn_rs 215+ -5 20_1)-
Here we use a set of homogeneous variables {y},...,y,_,, 21s---,2._1} disjoint from
that of the variables of ®, 5, and, as above ¢/, ..., 95, _, have degree 1¢ while z{,...,2/._;
have degree h;ll, e 7hf1 respectively. We write

DPog = Pog(Us s Yonrs 215 2 1) Page (Ys - ooy Yo 215 e o s 2 p)-

Clearly, for a fixed i € [l,n], there exists a natural way to determine an order
a; of all the elements of Z,: simply by reading from left to right the sequence
(i, @it 1y ooy Qi 1, ... 1) and writing the different elements that occur in it with
their weight. In this way g1 = «; and m; = ws(e;). Finally we denote by ‘i)a,i the

corresponding polynomial, that is
éa,i = éa,ﬁi .

As an easy consequence of Lemma 2.2 of [11] and its proof we obtain:

Proposition 2. Let A = (M, @), i € [1,n] and consider the polynomial ‘i)(m, then
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(a) ®q.; is a multilinear polynomial of F(X¢) of G-degree 1g;
(b) @a,i is not a graded polynomial identity of A, more precisely there exists a suitable

graded evaluation i : F(Xq) — (My,a) at matriz units such that i(Pa ) = €ii;
(¢) If B = (My,B) and ®,,; ¢ Idg(B) then B is equivalent to (g1,...,91,.--... )
—_—

mi

Gry -+ 9r). In particular (M, @) and (M, B) are isomorphic as G-graded algebras.
—_—

Moy

Similarly we denote by ¥, j the polynomial ¥ 4 introduced in Lemma 2.5 of [11] since
its definition actually depends only on the map « : [1,n] — G, on the fixed sequence
g = (g1,...,9r) of all the elements of Z, in some order and on the choice of an index
h € [1,n]. More precisely,

Wan =th1--tr,

where, for every j € [1,7],

vi= D (D Tuggye ugy sl o)

O'EStj

with ¢; = mpm; and {ugl), . ,ugi)}, e {ugr), . ,uE:)}, {v%l), . ,vt(ll)}, ce {fugr), ce
fug)} pairwise disjoint sets of homogeneous variables of degree deg(ul(j )) = g;l g; and
deg(vl(j)) = gj_lgh, for any ! € [1,¢;]. Moreover, if ay, has maximal weight then for ¥, 5
the same conclusions of that lemma hold. More specifically, we have:

Proposition 3. Let A = (M,,,«), h € [1,n] and consider the polynomial U, },, then

(a) Yo is a multilinear polynomial of F(X¢q) of G-degree 1g;

(b) If ap, has mazimal weight, then ¥, 5, is not a graded polynomial identity of A, and
there exists a suitable graded evaluation p : F(Xqg) — (Mp, ) at matriz units such
that 1(Ya,n) = enn;

(¢) If i is a graded evaluation then

B(Pan) C spanp{e;; | o = oy = gay,, for some g € Hy}.

Now we return to the study of graded involutions on matrix algebras, introducing an
important class of involutions on M, of transpose type.

Definition 3. Let n be a positive integer, and let v € S,, be a permutation of [1,n] such
that v2 = id. We define an involution 6. on M, by efj” = ey(j)y() for all 4,5 € [1,n].

Let (g1,...,9n) € G™ be the n-tuple defining the G-grading on M,,, since G is abelian
6, is a graded involution on M,, if and only if
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9i9~(i) = 99~() for alli,j € [1,n]. (1)

When v = 4,4, with 2¢ < n, is the permutation on [1,n] defined by

(i) = n+1—i, ifiell,qJUn+1-g¢q,n]
Vgt = 7, ifielg+1,n—q,

we denote the corresponding involution 6 simply by 6, 4. Note that the number of fixed
points of 7, 4 is exactly n —2¢g. When n—2¢ = Oor 1 we denote by +,, and 6,, respectively
the corresponding map and involution. In this case

9, .
€ = enti—jnt1-i for alli,j € [1,n]

and 6, is called the reflection involution.

When ¢ = 0 then 6, ¢ is the classical transpose involution defined by eﬁj = e;;. Finally,
when n = 2m is an even positive integer we denote by o, the symplectic type involution
on M, defined by:

e%" = 5[1,m] (Z)é[l,m] (])6?]" = 5[1,m] (Z)a[l,m] (j)en-‘rl—j n+1—i for all 7".7 € [17 2m]

where

. 1 ifiell,m
5[1,m}(7’) = { [ ]

—1 otherwise.
The description of the involution defined on any finite dimensional central simple
algebra (see, for example, [30, Chapter 3]) is well known. Here we recall only the following

result:

Proposition 4. Let F' be an algebraically closed field of characteristic zero, and let * be
an involution on M,. Then either x is of transpose type and

(M, *) =2 (M, t) = (M,,0,)
or n is even, x is of symplectic type and
(M, %) = (M, 0).

Once again, 0, and o, are graded involutions on M, with respect the elementary
G-grading induced by (g1, ...,g,) if and only if

GiGn+1—i = Gjgnt+1—; for all ¢, j € [1,n]

and n is even in the symplectic case.
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Now we recall the duality between the involutions on the matrix algebra M,, and the
bilinear forms on the vector space V = F™. If

p: VXV = F
is a non-degenerate bilinear form, for any X € End(V),a,b € V, the relation
o(Xa,b) = p(a, X*D),

defines an antiautomorphism * : End(V) — End(V). If B is a fixed basis of V then, in
the matrix form, * can be written as

X* = (¢ HX'D,

where ® is the matrix of ¢ with respect to B and, as above, t is the transpose involution
on M,,. This antiautomorphism is of order two if and only if ¢ is symmetric or skew-
symmetric. Conversely, by Noether Skolem Theorem (see [26]) any involution  of M, is
of the previous form with ® = +® and ® is uniquely defined by * up to a scalar factor.
0 J,
Clearly ® = J,, when * = 60,, and ® = 7 ™ | when n = 2m and * = o,,.
—dYm

The relevance of the graded involutions defined above is expressed in the following

result

Proposition 5. Let (M, «,*) be a matriz algebra over an algebraically closed field of
characteristic zero F, with elementary G-grading o and graded involution * defined by a
non-degenerate bilinear form .

(a) If ¢ is symmetric then, for some integer q such that 0 < 2q < n, (M,,«a,*) is iso-
morphic as (G, *)-algebra to (M, §,0n,q) where the elementary G-grading is defined
by a n-tuple g = (g1,.-.,9n) € G™ satisfying

GiGym. (i) = 93 9yn.q(j) fOr alli,j € [1,n].

Moreover:

o if |G| is odd, then (M,,a,*) is isomorphic as a (G, *)-algebra to (My,,§,0,);

o if |G| = 2, that is M,, is a x-superalgebra, then either (M,,a, ) is isomorphic
to the x-superalgebra (Mg q,024) for some q such that n = 2q or (M,, o, *) is
isomorphic to (M, m,,t) for some mi = mq such that n = my + mo.

(b) If ¢ is skew-symmetric then n = 2m is an even integer and (M, a, %) is isomorphic
as (G, *)-algebra to (M, §,0,) where the elementary G-grading is defined by the
n-tuple g = (g1,...,9n) € G™ satisfying

GiGn+1—i = Gjgn+1—; for alli,j € [1,n].
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Proof. Let A= M, =P geG(Mn)g be a matrix algebra with an elementary G-grading
induced by a : [1,n] = G. Let Z, = {h1,...,hi} C G and m; = w,(h;) the weight of h;
in a, for all 7 € [1, k]. Recall that the elementary G-grading defined by « can be viewed
as an induced grading on the algebra of all linear transformations of a G-graded vector
space V=Vi®--- @V, with degV; = h; 7! and dimp V; = m,. Fixing any bases in V; we
obtain an elementary grading on M,, isomorphic to the initial one such that any matrix
M is decomposed into k? blocks

My - My
M= ;
My -+ My
where M;; is of order m; x m; and all matrix units of this block are of degree hi_lhj in
the G-grading.

Clearly M is a homogeneous element of degree 1¢ if and only if M,.; = 0 for all r # s.
It follows that

Alg = Mml SP R @Mmk

and A;, decomposes in the direct sum J; & --- @ Ty of its minimal two-sided ideals
J1,..., 3k, where I, = M,,, forallh=1,... k.

Since * is a graded involution of M, then it induces an involution on A;, and so
35 isin {J1,...,Jx} for all h € [1,k]. Then there exists a bijection 7 : [1,k] — [1,k]
such that 37 = J,;) and so m; = m, ;). We observe that n? = id and moreover, for all
r,s € [1, k], we have

(j’rAlng)* = j:ATGJ: = jn(S)Alcjﬁ(T)'
Now [J,41,Ts]a = h; ths, so we obtain that
hzlhs = |jrA1ch|a = |(jT’A1c38)*|a = ‘jn(S)Alcjﬁ(T”a = h;(i)h"(r)
and so
hrhn(r) = hshn(s) =c, forall r,s € [1, k‘] (2)

If1, = Zie[l,mh] ei; is the identity of M,,, = Jp, then 1} = 1,).
As observed before the involution * of M,, can be written as

X* = (@ )Xo,

where @ is the matrix of the non-degenerate bilinear form ¢ with respect a fixed basis
B of V associated to *, ® = +®, and ¢ stands for the transpose involution on M, . By
the above equality we get
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PX* = X'®
and in particular we have
q)ln(h) = 1,9,
for all h € [1, k]. Now, by writing the matrix ® in the form

é11 T é1k
d = Er,se[l,k]érs = )
i>}’€1 e (fkk

the previous formula becomes

E7“6[17’€](i)7"71(’“b) = Ese[l,k]éhs

and we obtain

Dy =0, Vs 7é 77(h)

That is in any column and in any row of ® there exists exactly one non-zero block and
the subspaces V,. and V; are orthogonal to each other with respect to ® for all r, s such
that s # n(r).

Now, we consider § = {r € [1,k]|n(r) =r} and & = {s € [1,k] | n(s) # s}. Clearly &
splits in orbits of length 2 under the action of n and we write & = &' Un(&’), where &’
is a complete set of representatives of these orbits.

We put W, =V, forallr € § and W, =V, @V, for all r € &’. We remark that W,
is a graded subspace of V', ¢ induces on W, a non-degenerate bilinear form and moreover
W, and W, are orthogonal to each other with respect to @, for all r,s € FUG&', r # s.
Let @, be the matrix of ¢ restricted to W,..

If @ is symmetric, then every ®, is symmetric and we can choose convenient basis of
W, such that, Vr € §, ®,. = I,,, € M, and, Vr € &, &, = JO Jg” € Mo, .

my
Finally, we put W; = U; for all i € §. If h = |§| and 2] = |G| with [ = |&’|, then
reordering the bases appropriately we can write

V:Vﬁ@"'@vrz@Uﬁ@"'@US;L@Vn(rl)@"'@vn(n)

and

o

A

I
~ o o
=)
o o™~
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where m = 3", c<m;, ¢ = > ;e mi and n = m + 2q. Clearly the involution on M, is
0,4 and the elementary grading on M, = End V' comes rearranging the given n-tuple
(a(1),...,a(n)) accordingly to this decomposition of V. By (2) it follows that the grading
on M, is the elementary one induced by (g1, ..., g,) € G" satisfying gig.,, . (i) = 9j9v...(5)
for all 4,5 € [1,n].

Now, let us assume that G has odd order. If r,s are in § then (2) implies that
h? = hyhoyry = hshysy = h? and so h, = hy, that is r = s and |§| < 1. If |§| = 1 then
the previous decomposition of V' becomes

V:VH@"'@VWEBUSEBVU(TL)@"'EBVn(m)

for some s € [1, k] and Uy is the homogeneous component of V having degree h . Hence,
by considering an appropriate basis of Us we can assume that &5 = J,,,, and so ® = J,,,
that is * is the graded involution 6,,.

If |G| =2 then k < 2. If & # () then 2 < |S| < k < 2, hence & = {1,2} and § = 0.
The previous decomposition of V' becomes V = V; @ V5, where 7(1) = 2, moreover one
has m =0, g = m; = dim V; = dim V5 = mo and n = 2¢q. In this case the involution on
M,, is the reflection involution 6,, and M,, is the superalgebra M, ,

When & = () then § = [1,%], ¢ = 0 and the involution 6,, o on M,, is the classical
transpose t. If £ = 1 the grading is the trivial one. If k£ = 2, the previous decomposition
of V becomes V = V) @ Vs, where n(i) = i for all i = 1,2. Moreover one has n = mj +mq
and so M, is the superalgebra M,,, m,, where we can assume m; > mo.

Finally, when ® is skew-symmetric then every @, is skew-symmetric. For all r € &’

0 J,
we can choose basis of W,. such that &, = ( J g ) € Mo,
T,
If 7 belongs to § then the subspace W, is homogeneous of degree k- and its dimension
0 J,
m, is an even integer 2n,.. In this case we have ¢, = J 8’”' € My, and we
—Jn,

can write W, = U, & U/, where n,, = dim U, = dim U.
By properly rearranging the bases, one obtains

V:Vm@"'vm@US1EB"'@US;LEBU;;L@"'@U;@Vn(n)@"'@vn(ﬁ)

and

where m = Zie&' ni + Y ice Mi and n = 2m. As above, this decomposition of V' deter-
mines on M, the elementary grading defined by the n-tuple (¢1,...,¢gn) satisfying the
condition g;gn+41—; = gjgn+1—; for all ¢, 5 € [1,n] and we are done. O
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As in the ordinary case, the dimensions of the subspaces Af identify the isomorphism
class of the (G, x)-algebra of matrices A = (M, a, x) for any finite group G of odd order.
More precisely, we have:

Proposition 6. Let A = (M,,a,*4) and B = (M, 8,+p) be matriz algebras with ele-
mentary G-gradings and graded involutions x4 € {0,,0,} and xg € {Om,0m}. If |G| is
odd the following conditions are equivalent:

(a) A and B are isomorphic as (G, x)-algebras;
(b) dimp Ak = dimp BY, for all g € G and p € {+,~};
(¢c) n=m and there exist p € S,, and h € G such that

0Yn = Yno and ﬁg(k) = hay

for all k € [1,n].

Proof. Clearly (a) = (b).
(b) = (c). Let us assume that dimp A% = dimp B/ for all g € G and p € {+, —}. One
has

dlmFA = dlmF B, dlmF A+ = dlmF B+, dlmF AT = dlmF B™.

Hence it follows that n = m and, as in the ordinary case, x4 and xp are of the same
type. More precisely, as above we write v = 7,, so y(i) = n+ 1 — i for all ¢ € [1,n] and
we consider the standard bases of A and B given by the elements

eij +ej;, ifi< v(7)

Pij = § €ij if i =(4)

eij —ejj, i1 >7(j)
for all 4, j € [1,n]. Here * denotes, depending on the considered case, the involution in A
or that in B. Now, let A(A) and A(B) be the subspaces linearly generated by the matrix
units ey(1), - - -, €ny(n) in A and B respectively. For all g € G, p € {+, —} we have:

From the previous condition (3), if & = (¢1,...,9n) and 8 = (hy,...,h,) there exists
0 € Sy such that g, g, = lery(iy]a = leomprtetn|B = Py Prerry) and Y(e(k)) =
o(v(k)) for all k € [1,n]. By Proposition 5, there exist a,b € G such that g, ) = ag; '
and hy ) = bh,:l7 for all k € [1,n]. Hence agk_2 = g,?lgw(k) = h;(k)hv(g(k)) = bhg_(i) and,
since G is abelian of odd order, one has hy) = hgy, for some h € G.

(¢) = (a). If x4 (and xp) are of transpose type, then the linear map ¢ : A — B
defined by 0(eij) = €y(i)o(;) is an isomorphism of (G, *)-algebras. If *4 (and *p) are of
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symplectic type, then n = 2¢ and we consider the linear map ¥ : A — B defined by
Y(eij) = €(i)e(f)eq(i)o(;) Where

1 otherwise.

-1 ifiell ) 1
E(i):{ ifie[l,q and o(7) ¢ [1,4]
Clearly |¢(a)|p = |8(a)|p = |a]a for all homogeneous element a € A and a straightfor-
ward calculation shows that ¢ is indeed an isomorphism of (G, *)-algebras. O
Let us emphasize that the isomorphisms of the previous proposition are defined by
o(z) = CxC™' and (x) = ExE™! (4)

where C' is the permutation-matrix related to ¢ while F is a generalized permutation-
matrix, obtained from C by changing 1 to —1 in the appropriate places. More precisely

C = Zeg(i)i and F = Zs(i)eg(i)i.
i=1 i=1

Remark 2. If A and B are (G, *)-algebras then also A ® B is in a natural way a (G, x)-
algebra. More precisely

la ®blagp = |alalb|s

for all homogeneous elements a € A, b € B and the involution *4gp is the map defined
by tensorising the involutions of A and B, that is x4gp = x4 ® *p and

(a®b)*497 —a** @ b*»
for all a € A and b € B.
When B is a matrix algebra we have:

Remark 3. Let B = (M,,, 5, *p) be the (G, x)-algebra of n x n-matrices endowed with the
elementary G-grading defined by the map 3. Since G is abelian, if A is a (G, *)-algebra
then A® B = A® M, is isomorphic as (G, *)-algebra to M, (A) via the map

a® €ij — ae;;

*2 and the

where the involution on M, (A) is the natural one, that is (ae;;)* = a*4e;;

grading is defined, as in [5], by

laeij| = B(i) " alaB())-
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Finally, it is straightforward to prove the following result:

Proposition 7. Let m,n be positive integers and p : [1, m]x[1,n] — [1, mn] be the bijection
defined by pu(r,i) = m(i — 1) +r then:

(M 0, 0) @ (M, 3,00) = (Mipp, @ B, 0rn)
(vaaa am) 02y (Mnaﬂy Un) = (ana a® B, Umn)

as (G, *)-algebras, where a ® B : [1,mn] — G is defined by (a @ B)(h) = a(r)B(i) for all
h=m(i —1)+r € [1,mn] and the isomorphism is given by

€rs @ €ij > €u(ri)u(s,j)
for allr,s € [1,m] and i,j € [1,n].

Let us recall that given a G-graded algebra A then the opposite algebra A°P has a
natural G-grading defined by AZ? = Ay, for all g € G, because A and A°? have the same
structure as vector space over the field F' and G is abelian. Clearly C' = A @ A°P has an
induced G-grading, given by Cy = Ay @ AfP and in this case the exchange involution

(a,b)**¢ = (b,a), forall (a,b)€C

is a graded involution on A & A°P.
When A is a matrix algebra with an elementary grading a we can realize (A ®
A°P o, exc) in two more convenient ways. More precisely:

Definition 4. If v : [1,n] — G is any map, we present the map « as a G-word (or n-tuple)

of lenght n, that is « := (a1,...,a,), then we define a~! := (a;!,...,a7") and we

consider the concatenation & = (o | @™ !) of the words o and a1, that is
- -1 —1
a= (a1, Q0,00 ).

We say that « is the *-closure of «.

Clearly a;qi2n 41— = 1g for alli € [1,2n] and so s, is a graded involution on (Ma,,, @).
Now let (M, ® M,,, @, 65,,) denote the (G, x)-subalgebra of n x n block diagonal matrices
of (May,, @, 0s,) and let us consider the linear map v, : M,, ® M?? — Mas,, defined by:

9271
0 b 0 0
w"(“’b)_<g 0>+<0 0) _<g b9n>’

for all (a,b) € M,, ® M?P. We obtain the following:
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Lemma 1. The map 1, induces an isomorphism as (G, *)-algebras from
(M, ® M a,exc) to (Mp® M,,&,bs,).

On the other hand we can consider the graded algebra (M,,, o) ® (M,,,a~!) and define
a G-graded involution 9, on it by

(a,b)" = (b9, a).
We denote this (G, *)-algebra by (M,, ® M,,, &, U,). Clearly, considering the map
(a,b) — (a,b’)
we obtain
Lemma 2. The (G, %)-algebras (M,, & MSP, o, exc) and (M, ® M, &,9,) are isomorphic.
We conclude with

Proposition 8. Let A = (M,, ® M2, a, exc) and B = (M,, ® MSP, 5, exc), then A and B

are isomorphic as (G, *)-algebras if and only if, for all h € [1,n], the polynomial Oy, is

not a graded polynomial identity of B. In this case, either B ~ a or B~ a™ L.

Proof. We realize A and B as (M, ® Mn,o’z,ﬁn) and (M, ® Mn,B,ﬁn) respectively.
Clearly, by Proposition 2, there exists an evaluation pj of éa’h such that uh(éa’h) =
(enn,0) € A. Hence the same results holds for B = A. Conversely, if éayh is not a graded
polynomial identity of B then either <i>a,h ¢ Ide((M,, ) or éa,h does not belong to
Idg((M,, 7)) and so either B ~ a or B~ a™ .

In the first case, by Proposition 1, the map o, defined by d(ei;) = eyzi)o(), 18 2
graded isomorphism from (M, «) to (M,,3) for some g € S,,. Clearly the permutation
0 = Y, 07Yn induces a graded isomorphism ¢’ from (M,,,a~!) to (M,,3~ ') and so the
map

(a,b) = (2(a), &' (b))

is the required isomorphism as (G, *)-algebras.
In the second case, the graded isomorphism § goes from (M,,,a~!) to (M,, 3) and so
the map

(a,b) = (2(b), &' (a))

is the required isomorphism as (G, )-algebras. O
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We remark that the corresponding (G, *)-isomorphisms from (M, & M,,, &, 62,,) to the
algebra (M,, ® M, (,602,) are given by conjugating with the 2n x 2n-matrices

c 0 0 C
(O C") and (C’ 0) (5)

respectively in the first and in the second case. Here C' is the permutation-matrix related
to o and C’ is the matrix related to 0" = ¥,07,, that is C' = J,CJ, = (CY)f» =
(1.

4. A classification of finite dimensional simple (C,, *)-algebras

In this section we present a classification of finite dimensional (C,, *)-simple algebras
over an algebraically closed field of characteristic zero, where p is an odd prime and
C, =< € > is the cyclic group of order p. We start recalling that, when G is a finite
abelian group and G denotes its dual group, there exists a well understood duality
between G-gradings and G-actions. Moreover if  is an involution on a G-graded algebra
A then * is a graded involution if and only if * commutes with the G-action on A.

In this situation, the proof of next theorem can be easily derived from the literature
(e.g., see [21]). It is a generalization of the classical Wedderburn and Wedderburn-Malcev
Theorems.

Theorem 1. Let G be a finite abelian group, A be a finite dimensional (G, x)-algebra over
an algebraically closed field of characteristic zero and J = J(A) the Jacobson radical
of A. Then:

(a) J is a (G,*)-ideal;

(b) If A is a (G, *)-simple algebra, then either A is G-simple or A = B @ B* where B is
a G-simple subalgebra of A;

(¢) If A is semisimple, then A is a finite direct sum of (G, *)-simple algebras;

(d) A=A & - A, + J, where each algebra A;, for alli € [1,m], is a (G, x)-simple
algebra.

The classification of finite dimensional simple C,-algebras is a particular case of a
deep result due to Bahturin, Seghal and Zaicev [6] concerning the structure of finite
dimensional graded algebras.

Let us consider the group algebra F[C,], we can realize this algebra as a graded
subalgebra of M, with respect the elementary grading induced by € = (1g,¢,. .. ,eP1).
More precisely, given the cyclic permutation 1 := (12...p) of the symmetric group .S,
let us denote by D the graded subalgebra of M, generated, as a vector space, by the
elements
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p—1
Con—1 = Z eni(1yni(n) for all h € [1,p], (6)
i=0
so that the elements of D are:
aq as ap—1 ap
ap a1 ap—1
ai1C1g + A2Ce + -+ ApCer—1 = UV : €M,

o o
a9 as tee ap aq

where a1,...,a, € F. Clearly D = F|[C,] as graded algebras, moreover M, (D) has a

natural Cp,-grading, induced by the natural grading on D and the trivial one on M,

denoted by 1¢ = (1g,...,1g). As above M, (D) = D ® M,, is a graded subalgebra of
———

M, = M, ® M, with respect the elementary grading induced by

1

= o T - -1
E®leg=1g,e,...,e"7 ... 1g,e,...,eP70).

n times

Hence we denote by €&, both this elementary grading on M, and the natural one
in M,(D). We remark that the invariance subgroup Hp, is the whole group C, and
we, (g) =n for all g € C,,.

Now, as in [12, Proposition 3.1.], we have:

Proposition 9. Let F' be an algebraically closed field of characteristic zero and Cp, = (g)
a group of prime order p. If A is a finite dimensional C,-simple algebra, then it is
isomorphic to one of the following Cp-graded algebras:

(a) (Mp,a), for some elementary grading o;
(0) (My(D),&n).

We now deal with the classification of graded involutions on (M, (D), ,). Notice that
the F-linear maps on M, (D) defined by, for all d € D,

% 0
(dem) "= dei‘;
OI‘, When n iS an even inleger

(deij)&” = del"

ij

are graded involutions on (M,(D),&,). More precisely they are induced on M, (D) by
the graded involutions 6, or ¢,, defined in the whole matrix algebra (Mp,,&y). It is
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not surprising to find that, up to isomorphisms, these are the only graded involutions
defined on it. More precisely, we have:

Proposition 10. If F' is an algebraically closed field of characteristic zero then, for any
graded involution on (M, (D),&,), either

(M (D), n, %) = (Mn(D),én, 0n)

or

and n is even.

Proof. Since D is abelian, the center of M, (D) is A = {dI, |d € D} and so A is a
(C,p, *) subalgebra of M, (D). On the other hand B = M, (Fc;) is the homogeneous
component of degree 1¢ of (M, (D),é&,), and so * induces an involution on it. Clearly

(M (D),&n,%) 2 (A® B, ® 1g, %4 ® *B)

where x4 and *p denote the involutions induced by * on A and B respectively. Moreover
(A,8,%4) = (D,&,0) and (B,1g,*p) = (M,,1g,4) where o and f are the involutions
corresponding to x4 and *p in the natural isomorphisms of GG-graded algebras between
A and D, B and M, respectively. Since * preserves the grading and the homogeneous
components of D are 1-dimensional then for each homogeneous element d of D there
exists t € F such that d®° = td. Clearly, ¢ = +1 since ¢ is an involution. Moreover
i, = 1 = c1, and so (dP)® = dP, for each homogeneous element d of D, because
d? € Fcy,,. It follows that t = 1 and so ¢ = 1. Therefore ¢ is the identity on D and *
is the identity on A. On the other hand, by Proposition 4, either (M, ) = (M,,0,) or
(M,,h) & (M,,0,) and n is even. The result follows by previous Remarks 2, 3. O

Now we are able to classify the finite dimensional (C,, )-simple algebras.

Theorem 2. Let A be a finite dimensional (C,,*)-simple algebra over an algebraically
closed field of characteristic zero. Then A is isomorphic to one of the following simple
(Cp, x)-algebras:

(a) (M, e, 0y) or (My,a,oy,) where the elementary grading is defined by o : [1,n] — C,,
satisfying the condition oo, 41— = jony1—; for alli,j € [1,n];

(b) (Mn(D),én,0,) or (M, (D),&,,5,);

(¢) (M, @ MSP,a, exc), with grading induced by the elementary grading defined on M,

by the map « : [1,n] — C, and exchange involution;
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(d) (M, (D)® M, (D)°P,&,,exc), with grading induced by the natural one on M, (D) and
exchange involution.

Proof. Let A be a finite dimensional (C,, *)-simple algebra. By Theorem 1, it follows
that either A is Cp-simple or A = B @ B*, for some C,-simple subalgebra B of A.

Let assume that A is a C,-simple algebra. If A is simple then by item (a) of Proposi-
tion 9 and by Proposition 5 we have (a). If A is C,-simple but not simple, then by item
(b) of Proposition 9 and by Proposition 10 we obtain (b).

Now, let A = B ® B*, where B is a Cp-simple subalgebra of A. Let consider C' =
B ® B°P, with the natural C,-grading induced by the one existing on B and exchange
involution (a, b)**® = (b, a). Clearly A and C' are isomorphic as (Cp, *)-algebras, because
(a4+b*)* =b+a* in A = B@® B*. Then, by Proposition 9, we obtain the statements (c),
(d) and the proof is complete. O

We remark that all the algebras in the statement of Theorem 2 can be defined even
in the case in which the field F is not algebraically closed, in this case we say that A is
a classical finite dimensional (C,, *)-simple algebra over the field F.

Now as a consequence of Proposition 6 we have:

Corollary 1. Let A and B be classical finite dimensional (C,,*)-simple algebras, if
dimp A = dimp BY for all g € C, and p € {+,—}, then one of the following cases
occurs

(a) A= B as (C,,*)-algebras;

(b) there exist some maps o, : [1,n] — C, such that A = (M,, & M, o, exc) and
B = (M, ® M, B,exc) with exchange involutions and gradings induced by the
elementary ones defined on M, by o and B respectively.

We conclude this section by noting that the canonical basis &, := {e;; | i,j € [1,n]} of
M, is always homogeneous since the grading is elementary, and moreover it is strongly
multiplicative, that is if b, bo are basis elements and b1by # 0 then b1 b9 is a basis element
too. The same properties hold for the basis

Dn = {Cshfleij | he [17p]7 Zv] € [lvn}}

of M,,(D) and for those of algebras M,, & M2 and M, (D) & M, (D)°P, given respectively
by &, :={(b,0) | b € £,}U{(0,b) | b € &,} and D,, := {(b,0) | b € D,,}U{(0,b) | b € D,}.

If B is any of these canonical bases and b € B then there exists ¢ € {1, —1} such that
cb* belongs to B. So we write b* € £ and we say that B is almost *-invariant.
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5. The (Cp, *)-algebra UTg, (A1,...,Ap)

In this section we will define the algebra UTép (Aq,...,A,) of upper block triangular
matrices associated with a sequence (A1, ..., A,,) of classical finite dimensional (Cp, *)-
simple algebras. To this end, some preliminary considerations are in order.

More precisely, if A is one of these algebras then, for some positive integer n, we
assume that either A = S or A =S @ S°P where S € {M,,, M,,(D)} and M, (D) is the
graded subalgebra of M, defined in the previous section.

In this situation we say that S is the constituent of A and n is the size of A. Moreover,
if S = M,, we say that A has extended size n, and if S = M, (D) we say that A has
extended size pn. We denote by s4 the extended size of A.

We remark that in the previous definition S is always a graded subalgebra of Mj,
with respect to the corresponding elementary grading ag : [1,54] = Cp.

We have:

Proposition 11. If A is a classical finite dimensional (Cp,*)-simple algebra, with con-
stituent S, extended size s = s and corresponding grading a = ag then A is isomorphic
to a (Cp, x)-subalgebra of (M, & M, &, 025) via the map pa defined by:

025
a 0 b 0 a 0
p— 3 pr— Op
(a,b)»—><0 0>+<0 0) (O b95> if A=SaS
925
. a O + a* 0 _fa 0 fA=S
“ o o o o/ ~\o e ) Y 277

Proof. If A = (M;® M2, «,exc) then the map ¢4 is precisely the map 1) considered in
Lemma 1. If A = (M,,(D)® M,,(D)°?,&,, exc) then the map ¢4 is the restriction of .
Finally, we remark that we can consider any (G, x)-algebra A as a (G, x)-subalgebra of
(A® A°P exc) with the induced grading, via the (G, *)-embedding given by a — (a,a*)
for all a € A. So, by the first part of this proof, we are done. 0O

and

If we look at Moy, as the tensor product My ® Msy, then we can write the matrix

g b as a ® e;] + b ® egs or, using the involution 6o, as a ® e1; + b ® 6?21, for all
a,be M.

Generalizing this construction to a direct sum we obtain the following:

Proposition 12. Let A,,..., A, be classical finite dimensional (Cp,x*)-simple algebras
with graded involutions *;, constituents S; C M, of extended size s;, grading words o'
on Ms,, and embeddings p; : A; — R; = M,, & M, respectively.
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Let s := 81+ ... + 8y and o = (al|...|a™) be the concatenation of the words
al,...,a™; consider My, endowed with the grading induced by &, the x-closure of «,
and involution Oys. Finally, define ( : R1 & -+ & Ry, — Mas by

al 0 am 0 - G [%
= " ii b7 S2m
C<<o b1>’ ’(0 bm>> ;a o +; o

Then the map p, defined by

P(u1, .- um) == Clp1(ur), . om(um))
is a x-embedding of A1 ® -+ ® A, in (Mag, &, 0a).
Now, with the same notation of the previous proposition we have:

Definition 5. Let Ay, ..., A, be classical finite dimensional (C,, *)-simple algebras, and
¢ the x-embedding of A; @ --- @ Ay, in (Mas, &, 025). For 4,5 € [1,m], let Vi; 1= My, xs,
and in Ms, denote:

Uij = Vij ® €45, Uij = Uszs = Vﬂ ® 6?;” and V = @ (Uij D Uij) ,
i,j€[1,m]
1<)

then we define
A = UTép(Al, oy Am) = (A1 @ D A) V.

A direct verification shows that UTép(Al, ..., Ap) is actually a (C,, *)-subalgebra of
My enveloping A1 @ - -+ @ A,, and whose Jacobson radical coincides with V.

We observe that the definition of the (C,, *)-structure on UTg, (Ay,...,A,,) depends
heavily on the maps a',...,a™ that define the gradings on each of our classical algebras
Aj,..., A, In this paper, when appropriate, we will emphasize the role of these maps.
An important case is the following

Definition 6. Given the sequence A4, ..., A, of classical finite dimensional (C,, )-simple
algebras, with grading words a',...,a™ for any m-tuple g = (g1,...,9m) € C},
we consider the C,-words gial, ..., gna™ of lenght s1,...,s,, respectively, defined by

(gna); = gnal for all t € [1,s1,] and for all h € [1,m]. We define the words
ag = (g1a’]...|[gma™) and its *-closure Qg
and the corresponding subalgebra of (Mg, g, f25), that we denote by

Ag = UTE (Ao Ay)
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distinguishing it from the algebra A = U T(ép (A1,...,A,) determined using the previous

grading words a', ..., a™

Once again, the h-th simple component of the maximal semisimple (C,, *)-subalgebra
of UT(EP g(Al, ..., Ay,) is isomorphic to Aj. Moreover, if g = (g,...,g) for some g € C,,
then

UTE (v, Ay) = UTE (A, .., Ay).

Now we establish some conditions on the presentations of Ai,...,A,, which yield
isomorphic (C,, *)-algebras.

Proposition 13. Given the sequence Ay, ..., An of classical finite dimensional (Cp,*)-
simple algebras, with grading words o, ..., a™, for any k € [1,m] we have

UT(EP(Al,...,Ak,...,Am) = UT(EP(Al,...,Bk,...,Am)
where:

(a) If Ap = (M,, ", *) we can permute appropriately the elements of the word oF;
that is, we consider By, = (M, 8%, +x) and B* = o*o~1 for some o € S,, such that
OVn = Tn0-

(b) If A, = (M,, @ M2P,a* exc) we can permute without any restriction the elements
of the word o ; that is, we consider By = (M, ® M2?, 3% exc) and B* = aFo~! for
any 0 € Sp.

(¢) If Ay, = (M,,® M2, ¥ exc) we can multiply the elements of the word o by any ele-
ment of the invariance subgroup Hx; that is, we consider By, = (M, @& M2P, ¥ exc)
and BF = ga* = (gak,... gak) for any g € Hox.

(d) If Ay = (Mn(D),ép, %) or A = (M, (D) ® M,(D)°?,&,,exc) we can multiply
the elements of the word &, by any element of C,,; that is, we consider respectively
By, = (M, (D), gén, *i) or By = (M, (D) & M,(D)°?, g, exc) and

gén = (97957-~-ung_1>‘-‘>g>gE7-'-7g€p_1)'

Proof. For each case we describe the isomorphisms maps acting on the whole algebra
(Mss, @, 055) which induce the required isomorphisms between UT(EF (Ay,..., Ak, ... An)
and UTg:p(Al, ..oy By ..., Ap). The isomorphisms are determined by conjugating with
the matrix

D+ (P—1,,) ®ew + (P71 — I,) @ e,

where for each case we consider the corresponding matrix P as follows:
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(a) In this case clearly s = n, moreover we have:

if ¥, = 6,, then P = Zeg(m, while if x5 = o, then P = Ze(i)eg(i)i

=1 i=1

that is P is one of the matrices C and E considered in (4).
(b) In this case

is the matrix C considered in (5).
(¢) In this case, since g € H,, there exists o € S, such that 8*¥ = aFp~! and, as in the
previous case, we choose

P = Z €o(i)i
i=1

(d) In this case, s = pn and there exists some power p of the permutation n = (12...p)

such that g& = (g, ge,...,geP~ 1) = &0 1. Therefore we can consider the matrix
P
P=> ey ®In € My®@M,. O
i=1

In the light of this result, it is appropriate to present the natural grading on the
algebra M, (D) as induced by the map g¢&,, where g is any element of C,. Once again
Hg = Hg, = C,and any element of C,, has maximal weight. In the following, in analogy
to the case of M,,, we will denote by « the map considered to define the given grading
on M, (D). Clearly the same considerations apply for the algebra M, (D) @ M, (D)°?P.
Moreover, it makes sense to give in this paper the following

Definition 7. Let A be a classical finite dimensional (C,, *)-simple algebra with grading
word «, we say that

- Ais (C,, x)-regular if, for some n > 1, A is one of the following algebras:
M,(D), My(D)& M,(D)* or M,® M’ with H, =C,,
- Ais (C,, x)-singular if, for some n > 1, either

A=M, or A=DM,®MPwith H, = {1c,}.



F.S. Benanti et al. / Linear Algebra and its Applications 699 (2024) 459-507 485

The last but not least instance of basic moves leading to isomorphic algebras is the

following;:
Lemma 3. Given the sequence A1, ..., Ay, of classical finite dimensional (C,,*)-simple
algebras, with grading words o',...,a™, let By = A,41_x with grading word B* =

(™R =L for all k € [1,m], then
UTE (Ar,... Ap) 2 UTE (By,..., By).

Proof. The result follows considering the (C,,x*)-isomorphism 7 between (M, &

Mg, @, 0s5) and (M @& Mg, a1, 0s5), induced by the permutation 7 € Sa:

T(i):{’i-i-s ifi e[l

i—s ifie[s+1,25]. O

Once again, let us make explicit a canonical basis of A := UT(EP (A1,...,An). Clearly,
a basis of J(A) is given by the following set

By = U ({ew®ejlue(l,s;], ve [l,sj]}u{evu®ef;’"
i,j€[1,m],i<j

v e [l,s5], u€[l,s]}).

To obtain a canonical basis of A we consider, for each k € [1,m], the canonical basis By,
of the classical finite dimensional (C,, *)-simple algebra Ay, we denote by By, its image
©(Bk) in A, and we add the elements of B ;. At the end, we get:

Definition 8. Let B := (Uye(1,,,) Br) U Bs. This homogeneous basis of A is called the
canonical basis of A.

As in the previous section it is easy to show that B = B is strongly multiplicative
and almost x-invariant, that is:

— biby € B for all bl,bg € B such that b1bs 7é O;
— b* € £B for all b € B.

Actually, any non-zero product of elements of B is well behaved with respect to the
action of permutations and the involution. More precisely, let A be a (Cp, *)-algebra,

ai,...,ar € Aanda=ay---a,. If 0 €S, and A: [1,r] = {1, %} is any map we denote
A A A(r)
g =gy g
We are interested to compute the product b} when the elements by, ..., b, belong to the

canonical basis B of A.
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We start by considering first only elements belonging to a unique classical finite di-
mensional (C,, *)-simple algebra. In this case let us say that (a,b) is a diagonal element
of M,, & MgP, or M, (D) & M?2P(D), if and only if a and b are diagonal matrices in M,
or M, (D) respectively. Now, with this terminology we have:

Lemma 4. Let A be a classical finite dimensional (C,, *)-simple algebra, B its canonical
basis, by,...,b, € B, bi=by---b., 0 €S, and \:[1,7] = {1,*}. If b,b) # 0 then

— b s in B and b) belongs to £B;
— if b is a diagonal element, then b) is diagonal, too;
— if b is not a diagonal element, then b) € {&b, £b*}.

Proof. If A = (M, §, *), where * = 0,0, or A = (M, (D),&,,*), with ¥ = ,,, 5, then
the statement follows from Lemma 1 of [14].

If A= (M, ® M, a,exc) or A= (M,(D)® M,(D)°P, &, exc), b # 04 implies that
bi,- .., b, belong to the same component of A. Moreover, since b} # 04, we have that A
is a constant map, that is either A\(i) = 1 or A(7) = « for all 4 € [1,7]. In the former case,
b) = b, and the statement follows from the previous result about products of matrix
units [27, Lemma 1]; in the latter case, instead, b) = Voay Yoy = (bo(r) - o))
and again the statement follows. O

Similarly, in the general case we have:

Lemma 5. Let B be the canonical basis of A, consider by,...,b. € B and letb=0by---b,.
If b # 0a then either b € By, for some k € [1,m] or b € B ;. Moreover, for any o € S,
and X : [1,7] — {1,%} such that b} # 0, we have:

— Ifb € By, then b; € By, for alli € [1,7], and b) € £By,;
— Ifbe By then b} € {£b,£b°}.

6. (Cp, *)-varieties and algebras UTEP(Al, oy Ap)

Our goal in this section is to prove that any minimal variety (see Definition 1)
of (C,,x)-algebras is generated by some of the finite dimensional (C,,x)-algebras
UT(*:p (A1,...,A,) introduced in the previous section. For this purpose let us consider
the following

Definition 9. Let A be a finite dimensional (C,, *)-algebra over an algebraically closed
field F'. We say that A is triangular if either it is (C,, *)-simple or A = A4; ®---® A, +
J(A), with Ai,..., A, (Cp,*)-simple algebras, m > 2, and there exist homogeneous
elements w1 2, ..., Wm—1,m € J(A) and minimal homogeneous idempotents e; € A;, for
each i € [1,m], such that
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(@) wi- - Wm—1,m # 04;
(b) €W j+1 = Wi i4+1 = Wi ;4+1€i+1 for all 1 € [1,m — 1].
(¢) J(A) = I(A) @ I(A)* where I(A) is the ordinary two-sided ideal generated by

W1,25 -+ s Wm—1,m-

In this situation the elements w;;y;1’s are called the homogeneous connectors of the
simple components of A and J(A) is generated as an ordinary two-sided ideal by the

* *
elements w2, W 95+ s Win—1,m, Wy _1 -

We observe that the order of the classical finite dimensional (C,, *)-simple algebras
Aq,..., A, in the semisimple part of a triangular (C,, *)-algebra, A, is important. For
this reason, in the rest of this paper, when we write A = A4; & --- @ A,,, then we assume
that AyJ -+ JA,, # 04.

If A is a triangular (C,,x)-algebra, then remembering the connection between the
notions of admissible (C,, *)-algebra and (C,, *)-exponent we get expg, (A) = dimpA.

Moreover using exactly the same arguments of the proof of Lemma 4.2 in [13], which
deals with the case p = 2, we obtain the following:

Proposition 14. Let V = varg (A) be the variety generated by a finite dimensional
(Cyp, *)-algebra A over an algezraically closed field F, then there exists a triangular
(Cyp, *)-algebra B in V such that expj*cp (A) = exp(*cp (B). In particular, if V is minimal,
then one has V = Var(’Ep(B).

The next theorem highlights the close link between triangular (C,,*)-algebras and
algebras of type Ag.

Theorem 3. Let A be a triangular (Cp, *)-algebra with semisimple part A=A - BAn.
Then there exists § € CJ" such that Ag = UTg¢ g(A1,..., An) belongs to varg (A). In
particular, if varg (A) is minimal, then varg (A) = Var?{:p(Ag),

Proof. First of all, as it is allowed to do, we assume that, for all & € [1,m], the idempo-
tent ey of the k-th (G, %)-simple component Ay, of the triangular algebra A corresponds
to the matrix unit e;, j, of M,, in the case in which Ay, is isomorphic to (M, ,a*, )
and to the elements ci,€;,j,, (€51ix,0), (C15€j544x,0) in the case in which Ay is isomor-
phic respectively to M, (D), My, © M?, M,, (D) & M,, (D)°? with the corresponding
gradings and involutions.

We remark that ci.€j, 5, = Y11 €p(ju—1)+1p(js—1)+1 When we realize M, (D) as subalge-
bra of M,,. Hence, for all k € [1,m], we put

. Jk if A, = Mnk or A, = Mnk D Mﬁg
T pGe— 1) 41 if Ap = M, (D) or Ay & M, (D) ® M,, (D)°.

Now we define g = (g1, ..., 9m) Where
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g1 = lg and g, := ak(ik)_lal(ilﬂwm e wp—1 k|4, forall k € [2,m]

if1 <mandwipo,...,Wn—1,m are the homogeneous connectors of the simple components
of A. Our goal is to prove that Ag € varg (A). To this end, we work by induction on
the number m of the (C,, *)-simple components of A.

If m =1, then Az = UT(ép,g(Al) = A; = A and the statement is clearly true.
Hence, we assume that m > 2 and remark that |wi kt1]a = |€iip,, @ exrt1|a, for all
k € [1,m — 1]. Now let

f=Ff@,.. zn,21,... 2) € F(Xq, *) — Idc, (Ag).

We want to show that f is not a (C,,*)-polynomial identity for A. Since F' is a field
of characteristic zero, we can assume that f is multilinear. Hence, there exist elements
bi,...,by of the canonical basis B of Ag such that [b;|a, = || p(xg,«) for each i € [1,7n]
and f(b1,...,b,,b],...,b5) # 0a,. Since J(Ag) is nilpotent of index m, if ¢ is the number
of the by’s which are in J(Ag) then ¢t < m — 1. Let by,...,b; be such elements, hence

b1 = Cuyvy ® Chikys- -5 bt = €ypo, @ €k, With by < Ky for all I <t and b, = ey,0, @ ek, k.,
for all r > ¢. Assume first that ¢ < m — 1. Then there exists an index h € [1,m — 1] such
that none among of the elements b1,...,b, is in ;.5 (U} ; Uy, ;). Now, we have to

distinguish two cases:
e if there exists [ € [1,n] such that b, € U, ;, ® U, 3, for some r < h, then all elements
b’s are in the subalgebra

EB o(A;) ® @ (Uij ® Usj),

i€[1,h) 1<i<j<h
which is a (C,,*)-algebra isomorphic to A, := UTEp’g/(Al,...,A,-I), where g’ =
(g91,---,95), corresponding to the triangular (C,,*)-subalgebra A’ of A with (C,,*)-
simple components Ai, ..., Aj and connectors w12, ..., w;_; j;
e the basis elements by, ..., b, are in
D e P U;el),
i€[1,m],i#h 1<i<j<m
i)

which is a (C,, *)-algebra isomorphic to A'g/ = UT(ép’g, (At A A Am),s
for g’ = (91,---95_1>9h+1>- - - » 9m), corresponding to the triangular (C,, *)-subalgebra
A’ of A with m — 1 simple components Ay,..., A;_;, A5, q,..., Ay and connector ele-
ments W1,2, -, w;l_27;l_1, (wﬁ_lﬁwﬁﬁ_‘_l), w;l+17ﬁ+2’ vy Wm—1,m-

In both cases f & I dg, (Ag/). By inductive hypothesis, we conclude that f does not
belong to Idg (A).

Now, we suppose that ¢ = m — 1. Let us define e := Zle eii € Mys and € = ef2s.

Hence e is an homogeneous idempotent of degree 1 and 1,7, = e + €. Let 71 : Mo, —
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My, be the C,-graded homomorphism defined by 7'(a) := eae and denote 7+ the similar
map induced by e. Then

For b, B, 0) = 7 (F(bry o b, B B7))
F T (f(bry e bny BT, 05)) # Oay

implies that at least one summand is not zero. We can suppose 7' (f(by,...,by,,

1,.--,0})) # 0a,. Then we confine ourselves to analyze only the monomials of f whose
image by 7 is not zero. By appropriately replacing the variables of f, we can also assume
that z122 - - - 7, is one of these monomials, that is b = byby - - - b, # 0a,. Hence, there ex-
ist t1,...,tm—1 € [1,n] such that by, = €y 0p, @€12,...,bt, | = €w._1v, @ €m—_1m, Where,
if s; is the extended size of A;, u; € [1,s;] and v;41 € [1,8;41], for all ¢ € [1,m — 1].
Moreover each b; € {b1,..., b, }\{bs,,... b, ,} is in the diagonal blocks of Ag.

Hence, by Lemma 5,

ﬂ-T(f(bla . 'abnab*{v s 7b;kL)) = 661“} 02y €1m

for some 0 # B € F, u € [1,81] and v € [1, s,]. Now, for every k € [1,m] and pairs of
indices 7,7 € [1, x|, we denote by ex(i, ) the only element of the basis B, having the
matrix unit e;; ® ex, of Uy as its component, so that the idempotents eq, es, ..., ey, of
the triangular algebra A correspond respectively to ej(i1,i1),e2(i2,42), .- ., €m(im, im)-
We set by := e1(1,u), byy1 := e, (v, 1) and let us consider the polynomial f" := z fx,11
with new graded variables xg, 11 of degree |bo|a, and |b,;1|a, respectively. Then

boﬂ'T(f(bl, cey by b7 0 )b = e1 (1, u) (Bewy ® e1m)em(v,1) = Blerr ® erm).

For all k € [1,m — 1], let ¢, € Ay and dg11 € Ag41 be the elements corresponding to
e (ug, i) and egy1(ig4+1,vp+1) in the isomorphisms between the simple components of
A and the diagonal blocks of A respectively, then set a;, := crpwr k+1dr+1 Where wy 11
is a connector of A. From the equality

Cupvpsr @ €kk1 = €k (Uk, i) (€ipipyy © €rkt1)er41(Thr1, Vht1),

it follows

lat,|a = lex|alwr kri]aldiri]a = |ex(ur, in)agl€iyip,, @k kv1|aglers1(irr1, ver1)|a, =

|€ukik Y ekkldg|€ikik+1 ® ek k+1|&g|eik+1vk+1 ® 6k+1k+1|5tg = ‘eukkarl ® ekk+1|Ag = |btk IAg'

Setting tg := 0 and t,,, := n+ 1, we can conclude as above that the elements b; belong
to Uk k EBU—kk for every tp_1 +1 < i <ty — 1. Let a; € Ay be the element corresponding
to b;, di := ap that corresponding to by in A; and ¢, := an4+1 that corresponding to
bp+1 in A,,. Finally, we consider the evaluation



490 F.S. Benanti et al. / Linear Algebra and its Applications 699 (2024) 459-507

aof(ar,...,an,a3,...,a;)an41.

Clearly it is in J(A) and we will prove that it is non-zero.

Recall that J(A) = I(A) @ I(A)*, where I is the ordinary two-sided ideal generated
by the connectors wl,g,.. , Wm—1,m, SO that we can write a = 7TA( ) + 7TA( ) for all
a € J(A). Here 7T£ and 7rA are the natural projections on I(A) and I(A)* respectively.

First, let Wg(aoagh) e ai\_?h)an+1) be a non-zero element of I(A), then o(tx) = tr and
Ay, =1, for all k € [1, m — 1]. Moreover, for every ¢ € [1,m], the inequality t,—1 < < ¢,
implies that t,_; < o(l) < t, since ail(l) € A,. In this case we obtain:

A1 N An = A e An =
Q01 A nt1 = gy - i) Om =

A Aty 141 Aty -1 Aty _1+1 An
dl%h) Sl — 1)Clw1 2d2a (th41) " Qo (ta—1)C2W2,3 " " wmfl,mdm%(t,ﬂjlﬂ) © O () Cm
#0a

that provides the following equivalent statement:

Aty +1 At, —
dkag(’;k_llﬂ) e a;(’;kil)ck # 04, Vk € [1,m]
and so
. )\tk_1+1 )\tk_l .
ek(lk’vk)ba—(tk,l—kl) cee bg(tk_l)ek(uk,zk) 7é OAg Vk € [1,m],
where v1 = w and u,, = v. By Lemma 5, one has that for all & € [1,m], the
A Ay

element b_ t" 1;11) . 'E’“ 4y is in £ Moreover, since |b k= ljil)...bo't(’tckilﬂAé =

|ek(vk,uk)|Ag, the same Lemma 5 implies that, for each k € [1,m], there exists
(k) € {—1p,1p} such that

Atg_y+1 Atj—1 o)
ba(tk_1+1) b o(te—1) = 07)\ek(vk,uk).

Hence, for a such pair (o, \) we obtain:

A Aty — Aty 1+1 An
el(L Ul)bo%l) T baélil)<€u1vz®el2) T (eunz—lvnz®em_1m)bg(t7njl+1) T bg(n)em(umv 1) =

(TT e (erm ®enn)

k=1

and so WT(bizl) . [’)"n)) #0a,-

Conversely, if « (b’\zl) b)‘ ) # 0Oa, then, in accordance with what was stated
above, one has that o(t;) = t and A =1 for all k € [1,m — 1] and, for every ¢ € [1,m],
the inequality t,—1 < < t, implies that t,_; < o(l) < t,. Hence, for all k € [1,m]
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Aty _1+1 Aty -1 (k)
b Ty bt = Corek (Vks )

from which it follows that

. At Ae, . k ..
ek(lk7vk)bo—t(’;k_1;j1) e bg?{kil)ek(ukazk) = C,(,&ek(lk,lk)-

Since ey, is the minimal homogeneous idempotent of Ay, corresponding to ey (ix,ix), we

have that

Aty _q1+1 Aty —1 (k)
dk’aa(tk,l-‘rl) e a’a’(tk—l)ck’ = Co 2\Ck

for all k € [1,m] and

m
(k)
dag(1)  Aomycm = (] cox)e1wioeawvas - em_1wm_1mem =
k=1

m
k
( H Ct(r,,)\)wl,2w2,3 CWm—1,m 7 04.
k=1

Then, we obtain

71'L(aof(ah ces Gy, al, .. ,GZ)GnH) = fwi2W23 "  Win—1,m # 04.

Hence f is not a (Cy, *)-identity for A and we can conclude that Ag belongs to varg (A).
Since expg, (A) = expg, (Ag), if varg (A) is minimal, then varg, (A) = varg, (Ag) and
the theorem is proved. 0O

Now we can present the main result of this section about (C,, *)-varieties generated
by finite dimensional algebras.

Theorem 4. Let V be a variety of (Cp,*)-algebras generated by o finite dimensional
(Cp, *)-algebra with expg (V) = d, then there exists a sequence A, ..., Ay, of classical
finite dimensional (Cp, *)fsimple algebras such that A = UTE (Aq, ..., Ay,) belongs to V
and dimp(A; & -+ B Ay, =d. ’

In particular, if V is minimal then V = Varép (UT(EP (A1, ..., An)).

Proof. Let F be the algebraic closure of F and consider the variety V determined by the
ideal of F(Xg, *) generated by Id: (V). V is generated by some (Cp, *)-algebra of finite
dimension over F. Then, using Proposition 14 and Theorem 3, it follows that V contains
UT(ép (Ay,...,A,,), for suitable (C,, ¥)-simple algebras Ay, ..., A, with dimz(4; & @
A,,) = d. In light of Theorem 2 and Definition 5, we can determine a sequence Ay, ..., A,
of classical finite dimensional (C,, *)-simple algebras over F' such that A, 2 Ap®p F and
S0 UTép([ll, oy Ap) UT(ép(Al, ooy Ap) @p F. Tt follows that UTép(Al, AR EV
and clearly d = dimp (A1 @ - @ A,,), as desidered.
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Finally, if V is minimal then we obtain V = varg (UT(EP (A1,...,A,)) since
exp?&p(V) =d= exp&‘jp(UT(ép (A1,...,Ap)). O

7. Alternating polynomials for UTEP (A1,...,AR)

Throughout this section we will assume that (41,...,4,,) is an m-tuple of classical
finite dimensional (C,, *)-simple algebras and A = UTép (Ay,...,A,). Our purpose is
to construct a family of (C,, *)-polynomials alternating in suitable subsets of variables
which are not (C,, *)-identities for the algebra A.

For each classical finite dimensional (C,, *)-simple algebra A first we will describe a
basis L(A) contained in (J, ) AY, where g € Cp and p € {+, -}, which we call the
standard basis of A. Next we will construct appropriate non-zero products of all the
elements of that standard basis.

Case I. Let A = (M, a, %), where x = 6,,, 0, is the transpose or the symplectic type
involution and o = (g1,...,9,) € C] satisfies the condition g;g,;) = g;g+(;) for all
i,7 € [1,n]. In this case, the standard basis {p;; 4,5 € [1,n]} of A introduced in the
proof of Proposition 6 is the required one, L(A). Let us recall that, for all 4, j € [1,n],

e +efy, ifi<y(j)
Pij = § €ijs if i =~(j) (7)
ey —efy, i >(j)
To construct the standard total product of the elements of this basis, we observe that
one obtains the matrix unit e;; as a product

CiCy---Cp = 611(6126’22621) s (61n6n2€2n rlpn—16n—1 nennenl)

of the n? matrix units of M,,. Let us fix such a product, which we denote by 71 s, . The
first standard total product of A, m; 4, is obtained from 7y s, replacing the matrix units
e;; appearing there with p;;.

If i = v(j) then eyypij = ewveij = Oyiu; Where &,; is the Kronecker delta. If ¢ # v(j),
then p;; = e;; + ceq(j)y() for some ¢ = +1p and 80 €uyPij = OviCuj + COyy(j)Cury (i) and
only one of the two addends can be nonzero. Since in the product 7; 4 exactly n factors
are given by the matrices ey, €2n-1,...,€n1, in the expansion of m 4 we can have at
most one non-zero addend. Clearly, by our positions, 7 57, appears in the expansion of
71,4 and so T 4 = 71,0, - Hence

T1,A = T1,(M,,,a,x) — €11-

Similarly, if n > 1 we can consider the product m,, as,, given by 7, a1, = €,1C1 -+ Cr—1C},_4
where C),_{ = €1n,€n2€2 * - * €y n—1€n—_1n€nn and the corresponding total product m, 4
obtained from 7, »s, replacing the matrix units e;; appearing there with p;;. As above
we have:
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Tn,A = Tn,(M,,a,*) — Enn-

Finally, if 1 < h < n, we consider the product 7, s, = CiC1 - -Ch—1Chy1 - - Cpe1p, where
éh = €p2€2h """ € h—1€h—1hEhhER1, and the corresponding total product 7 4. Clearly,
we obtain:

Th,A = Th,(M,,0,x) = €hh-

Case II. Let A = (M, (D), c, *), where a = gé,, for some g € Cp, and * = 0,5, is
the graded involution defined on M, (D) by

(deij)e_” = de?}”’ and  (de;;)’" = de7r .
In this case the standard basis of A is L(A) = {c.i-1p;; | L € [1,p], i,j € [1,n]}, where
the p;; are the elements of M,, defined above (7), and the c.i-1 are the elements of the
natural basis of D given in equation (6).
The h-th standard total product is obtained by multiplying first all the elements
C1,Pi; in the same order used in Case I for the elements p;;, then all elements of degree
€ and so on. The final result is

2 2
Th,A = Th (M, (D),ax) = (Clg€rn) (L €nn) - -+ (CCo-1€nn) = C1g€hh.

Case III. Let A = (M,, ® MSP,«,exc) and let us define for all 4, j € [1,n],
@ij == (eij,ei5) and  Gij := (eij, —€45). (8)

In this case the standard basis of A is L(A) = {¢;j, ¢i; | 4,j € [1,n]}.

To construct the h-th standard total product, as made in Case I, we start from the
product mp a1, = enn. Hence replace the matrix units e;; appearing there with ¢;;. After
that, multiply this product with the product of all the elements of this basis involving
the g;;’s in the same order used for the g;;’s. With these positions one has that

q11 = (en1,—enn) ifn=1,
Th,A = Th (M, &M, a,exc) — .
" (enn,0) otherwise.

Case IV. Let A = (M,(D) & M,(D)?, o, exc), where as above a = g&, for some
g € C,. In this case the standard basis of A is L(A) = {c.i-1¢;j,ca-1qi; | h € [1,p], 4,5 €
[1,n]}, where the ¢;;’s and the §;;’s are the elements of M,, & M2P, defined above (8).

The standard total product is obtained by multiplying first all the elements c;¢;; and
€1, @i; in the same order used in Case III for the elements g;; and g;;, then all elements
of degree € and so on. The final outcome is:



494 F.S. Benanti et al. / Linear Algebra and its Applications 699 (2024) 459-507

cigq1 = (c1ge11, —cigen) ifn=1,

Th,A = Th,(M,(D)®M,(D)°P,a,exc) = ‘
(c1g€nn,0) otherwise.

Now, as in the case of ordinary G-graded algebras [3], we insert in the standard total
product 7y 4 suitable homogeneous minimal idempotents of A that border each of the
elements of L(A). More precisely, we denote by 7, 4 this new product:

Case I for each element p;; of L(A) we insert the idempotent e;; on the left and we
conclude by multiplying on the right by the idempotent ey, as a final result we obtain

Th A = €hh;

Case II for each element c.i-1p;; we insert on the left ¢ e;; and we conclude by multi-
plying on the right by c;,epp so that:

Th,A = ClgChh;

Case III for each of the elements ¢;; and g;; we insert on the left (e;;,0) and we conclude
by multiplying on the right by (en,0), we have

Th,a = (enn, 0);

Case IV for each of the elements c.i-1¢;; and c.i-1g;; we insert on the left (¢, e;,0) and
we conclude by multiplying on the right by (ci,epn,0) and we obtain

Th,a = (c15€nn,0).
We note that the free algebra F/(Xq, %) is also freely generated by the elements

+ _ .. *
T, =Tig+Tig and z

ing = Tig i g

where ¢ € G and ¢ = 1,2,.... In this paper we will refer to them as variables of type
(g,p) with g € G and p € {+,—}. For any classical finite dimensional (C,, *)-simple
algebra A, we denote by my,_ 4 the multilinear monomial built by replacing in the enriched
standard total product 7, 4 each element of type (g, 1) with a variable of the same type in
F(X¢,*) and the minimal homogeneous idempotents with dimp A + 1 pairwise different
variables of degree 1¢.

Clearly, the set of the variables in M 4 does not depend on the choice of h. When
appropriate, we will denote by S4 the set of variables of M 4 corresponding to the
elements of the standard basis L(A) and with Y, the set of variables of degree 1¢g
corresponding to the idempotents introduced to pass from 7, 4 to 7, 4. We will say that
S4 is the set of designed variables and Y}, is the set of controlling variables. Clearly S 4
is a disjoint union of the subsets Sa 4, given by the variables of the same type (g, ).
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Definition 10. Let A be a classical finite dimensional (C,, x)-simple algebra. We denote
by fn.a the (C,,*)-graded polynomial obtained by alternating in 7y 4 the variables of
Sagu forall ge Cpand pe {+,—}.

Proposition 15. Let A be a classical finite dimensional (Cp,*)-simple algebra of size n.
For each h € [1,n] the polynomial fj, a is not a (C,, *)-graded polynomial identity for A.
More precisely there exists a (C,, *)-evaluation ey, a such that

enaA(fna) =Tn,a.

Proof. The desired evaluation e, 4 is determined by replacing each variable of 1y, 4 with
the corresponding element of A appearing in the enriched standard total product of A,
7h,4. Clearly in each monomial of fj, 4 the variables in Y4 appear in the same order as
in 7y, 4 and these variables delimit all those of S4. Therefore, in order to not get zero,
the evaluation of each variable in S4 with elements of L(A) is uniquely determined by
those of the bordering variables and by its type. Since we do not alternate variables of
different type, we deduce that 1, 4 is the unique summand of f 4 which is not zero
under the evaluation by ep 4 and so the proof is completed. O

Clearly the polynomials f5 4’s are related to the dimension of the components Af of
the (C,, *)-algebra A.

More precisely |S4,q,,| = dimg AY, hence if f, 4 ¢ 1dg(B) then dimp BYf > dimp AY
for all g € Cp, and p € {+,—}. Now we define some other polynomials closer to the
structure of the given (C,, *)-algebra, using the polynomials <~I>a,h and ¥, introduced
in Section 3.

Definition 11. Let A be a classical finite dimensional (C,, *)-simple algebra of size n and
let v be a positive integer. For each h € [1,n] we consider v copies of fj, 4 in pairwise
disjoint sets of variables and we denote by f () the i-th copy of fi a. Then we define

1 v
Foa=H 1
moreover we consider:
f,’;A\Dmh if A= (My,,a,x*)
f” _ fﬁ’,A if A= (Mn(D),a, %)
PAT) B aBanWan i A= (M, & M, a,exc)
i if A= (M,(D)® M,(D),a,exc)

By previous Propositions 2, 3 and 15 we obtain:

Proposition 16. Let A be a classical finite dimensional (Cp,*)-simple algebra of size n
and h € [1,n]. If a(h) has mazimal weight then the polynomial f,ll:A is not a (Cp,*)-
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graded polynomial identity for A. More precisely there exists a (Cp,*)-evaluation ép 4
on the bases L(A) and B of A such that

én,a(fr a) = Tn,a-

Later in the paper when we consider the polynomial f;’: 4 we will tacitly assume
that «(h) has maximal weight. Let us emphasize that this condition on a(h) is always
satisfied, for all h € [1,n] when the classical finite dimensional (C,, *)-simple algebra is
M, (D) or M, (D) & M, (D)°P. Moreover, we have:

Lemma 6. Let A = (M,,,a, %) be a classical finite dimensional (Cp, x)-simple algebra. If
7 is a (Cp, x)-evaluation on A, then

ﬁ(f;:,A) C spanp{ei;j|a; = oj = ap }.

Proof. By Definition 11, we have that
fra=Fi a%an.

Let us consider the invariance subgroup H,. If H, = {1<cp}, since, by Proposition 3,
N(Yan) C spanp{e;j|a; = a;j = ap} and f# 4 has homogeneous degree 1c,, then we
are done. Let us now H, # {1¢, }, then H, = C, and, Vg € C,, wa(g9) = wa(lc,) = m,
for some m > 1. It follows that each element of C, appears exactly m times in o and
n = mp. Let G = C,, since |G| is odd, we can assume that a(y(i)) = a(i)~1, Vi € [1,n].
Moreover, by Proposition 6, we can suppose that

_ T r r4+1 r+1 p—1 p—1
a=(g...,e,.. e & gy g, e T e el L ePT)
———

m m m m m

where p = 2r + 1.

Clearly, it is enough to consider the case v = 1. Since the polynomials ho, A's are
multilinear we can assume that 77 evaluates the designed variables with elements of the
standard basis L(A) and the controlling variables with elements e;; of the canonical basis
&, of degree 1g in A, ie. oy = 5.

As in the proof of the Proposition 15 there is a unique summand of fj, 4 which is non
zero under this evaluation and we can assume that it is ™My, 4, so

0(fn,a) = 0(Mp,a) # 0.

Let observe that every element p;; of L(A) appears once and only once in the evalu-
ation 7. If i = ~(j), then p;y(;y = e;4(;) While if i # y(j), then p;,(;) has two summands
in the canonical basis &, e;; and e, (;),(;), of the same degree but only one contributes
to the calculation of 7j(p 4) # 0. So, for each designed variable = of My, 4, T will be
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the unique element of the canonical basis &, such that 77(z) # 0 and which contributes
to the non-zero product 7(/myp, 4). Therefore Z = ey, for appropriate indices a, b € [1,7],
and, in this case, we write a = A(Z), b = p(Z), x ~ T and we say that “e,, appears in
7”or “7) contains e,;”in the position z. If b = y(a), then ey, appears once and only once
in 7. If b # y(a), then at least one of the elements eqp, €+(4)~(5) appears in 77 and only one
of the following pairs (€ap; €ab); (€abs €x(a)y(v))s (€x(a)y(b)s €(a)v(p)) has both components
appearing in different positions x1 and xs. In fact, the components z; and Zo correspond
to designed variables of the same degree but of opposite signature: one is symmetric and
the other one skew-symmetric.
Suppose now that h = 1, then

Mh,a =14 =YoC'y1C* - C"yn,

where, for all i = 0,...,n, y; has degree 1g and, for all k& € [1,n], C*¥ are built by
replacing in Cj, each element of type (g, 1) with a variable of the same type in F(X¢, %),
so they have 2k — 1 designed variables and 2k — 2 controlling variables. If x is a designed
variable of C*, then we write 2 € S4 N CF. In particular C; = 2} is a symmetric variable
of degree 1g. If k = 2, then the variables in S4 N Cy are 27, w?, 23. If k > 3, then the

elements of S, NC* are in the following order

Zf,ulf,vlf,...,UZ_2,1}]I§_2,U)]€7Z§
with [25] = [2§|7" = lepl, [w*] = lews] = 1a, [uf| = [F|7! = lerisal, Vi € [1,k = 2].

Since C* has degree 1¢, then 2} ~ z1 = e,,5, with a(a1) = a(b1) and 7(C*) = e,, 4, With
alay) = a(dy), Yk > 2. Moreover 7(my,, 4) # 0 and so a(a1) = a(b) = alar) = a(dk),
Vk > 2, then there exists g € G such that g = a(ay). We want to prove that g = a(1).
We observe that

Since

we obtain that

g = ga(k)a(1)™.

For every g € G, let O, = {i € [1,n]|a(i) = g}, then A(u¥) = p(vF) € Oy, where
gr = alp(zh)). Also A(@*) = p(*) € O,.
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In particular both indices of the elements of the canonical basis &, determined by
the designed variables of degree 1¢, appearing in C* belong to Oy,

Clearly gr = g5 if and only if a(k) = «(h), Yk, h € [1,n]. Then, for all k € [1,n], O,
is identified by O (r). From our hypothesis, we have

O: =[1,m],...,0cr = [(r —1)m+1,rm],01, = [rm + 1, (r + 1)m],
Ogrir =[(r+1)m+1,(r+2)ml,...,O0p-1 = [(p— 1)m + 1,pm].

Then, for all i € [1,7] and for all k£ € O_:, the designed variables of degree 1¢ in C* are
all symmetric while, for all ¢ € [r + 1,p — 1] and for all k& € O,:, the designed variables
of degree 1 in C* are all skew-symmetric.

Thus, for a fixed €' # 1¢ and for all k € O,:, the elements of the basis £, determined
by these variables are pairwise distinct. Their number, for k € O,:,1is 1, 3, 5,...,2m —1
hence they constitute the canonical basis of one of the simple blocks decomposing A;,.
More precisely, O.: identifies the block U; =< eq | a(a) = a(b) = ga(1)7le! > M,,,
forallie[1,p—1].

If m > 1, then there exists e,;, € U; such that e}, = Fe q)yp) and a # y(b). If
€y(a)y(b) € Ui, then eqp + e, and eqp — ey, should be evaluations of designed variables
of the same type contrary to the fact that one element is symmetric and the other
one is skew-symmetric. Therefore e}, & U; and so U; is not *-invariant. It follows that
the p — 1 blocks Un,...U,_1 identified by O.:, for all i € [1,p — 1], correspond two by
two under the action of the involution *. In the decomposition of A;, only one block
U is stable under . Let ey, € U then, for what as been said, a(a) = a(b) = ga(1)~1.
Since a = (g,...,6,...,&", ...,  1g,...,1g,e" L ... e"tl ... eP=1 ... eP71) we have
a(a) = a(b) = 1¢g, then g = (1) as desired.

Let now m = 1. In this case n = p and « : [1,n] — G is bijective and * = 6,,. Let us
consider the monomial CP whose designed variables are in the following order

G SO P VP T
with degree
‘€1p|» |€p2|, |62p|a R |€pp71|7 |ep71p|7 |epp‘7 |ep1‘

respectively, and only 27 and 24 are symmetric.
Since « is bijective there exist j,k € [1,n| such that a(j) = g and a(k) = gp. Then
2~ ep =2V, 28 ey = 28 Ul v e, = Ul 08 v e = 0F, wP s e = wP. As the

variables ul, ... ,uzﬁ, wP, 25 are both of different degrees one of them must be evaluated
in epy(x). Considering that ey, (x) is symmetric then 25~ €y (k), 50 (k) = j and

leryy| = |25| = |ep1| that is (k)" 'a(y(k)) = a(p)~'a(1). This implies that a(k)™? =
(eP~1H~le = e? and a(k) = et Hence § = a(j) = a(y(k)) = a(k)™! = ¢ = a(1) and
we are done.
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Suppose now that h =n and let
1(fn.a) = 000 4) = Feij.
It follows that (i) = a(j) and we want to prove that a(i) = a(n) = 1. Notice that
Mna = Y025 1C -+ Yn—1C"  ynC Y p1.

Hence 23 ~ €ab, Yo ~ €ias Ynt1 ~ e With a(i) = a(a), a(k) = a(j), ala) ta(b) =
|28 = |en1| = a(n)"ta(1) = 2. The evaluation 7 obtained by 7 replacing 7(y,+1) with
H(Yn+1) = ex; is admissible and we have

N(f1,4) = 1(M1,4) = ewp-

By the first part of the proof we obtain a(b) = a(1) = ¢, then a(a) le = &% and so

a(a) =e 1 =a(n).

If 1 < h < n the result is obtained as before. O
Now, as at the beginning of the proof of Lemma 6, by Proposition 3 it follows that:

Lemma 7. Let A = (M, & MZP, o, x) be classical finite dimensional (Cy, *)-simple algebra
and let ™" be the projection on the first component defined by w'(a,b) = (a,0). If H, =
{1c,} and 7 is a (Cyp, x)-evaluation on A, then

ﬂT(ﬁ(flg,A)) C spanp{(ei;,0) | a; = a; = ap}.

Notice that the algebras considered in the previous lemmas are exactly the (Cp, *)-
singular algebras of Definition 7. We return to a more general situation, considering:

Proposition 17. Let (A,a,%4) and (B,f,*g) be classical finite dimensional (Cp,x)-
simple algebras of same dimension. If the polynomial JE}Z,A is not a (C,p, *)-graded poly-
nomial identity for B then A and B are isomorphic as (Cyp, *)-algebras.

Proof. Clearly fy, a ¢ Id(B), hence dimp Bl > dimp A} forall g € C, and p € {+, —}.
Since A and B have the same dimension it follows that dimp B} = dimp A} and, by
Corollary 1, either A and B are isomorphic as (C,, x)-algebras or A = (M, ®MSP, o, exc)
and B = (M, ® M?2P, 3, exc). In this situation the thesis follows from Proposition 8, since
B does not satisfy the polynomial @a,h. O

We conclude this section by extending the previous definitions and results to the case
when we consider the algebra A = UT(*:p (A1,...,Ap), where m > 1 and Ay, is a classical
finite dimensional (C,, *)-simple algebra of size nj, with grading defined by the map ¥,
for each k € [1,m].



500 F.S. Benanti et al. / Linear Algebra and its Applications 699 (2024) 459-507

We start by considering, for each k € [1,m], the standard basis L(Ay) of the (Cp, *)-
simple algebra Aj,. We denote by £ ,(A) its image ¢(L(Ag)) in A. Moreover, for all
k.l € [1,m] with k < [, we consider also the standard bases £;;(A) of the subspaces
Uy1 @ Uy of J(A) consisting of the elements (e;; ® eg;) % (e;; @ ex)?2, where i € [1, si]
and j € [1, 5;]. At the end, we get:

Definition 12. The standard basis of A = UTép(Al, oo Ap) s

gA) = | &)

k,le[1,m];k<l
Next we have:
Definition 13. Let v > m, uy,uso, ..., un_1 be homogeneous symmetric variables of type
(lui|,+) and (h1,ha, ..., hy) be a sequence of positive integers, such that hy € [1, ng],

then we define:

f;;l R U, Um—1,A — f;;11A1u1f;;21A2u2 e f;:m—LAm—lum*lf;L/m,Am

..........

Here, we assume that the sets of variables involved in the polynomials f;:k 4, and also
{u1,...,um—1} are pairwise disjoint. Clearly the polynomial f}(fk) 4, and the correspond-
ing monomial fn;:z 4, have the same set of variables. For i € [1,v], let U; be the set of all

designed variables occurring in f;(fl) Apres f}(;i 4,,» together with u; when ¢ < m. Then
each set U; is the disjoint union of its subsets U; 4 ,,, given by the variables of the same
type (g, it). Set

d‘]/? = dimp Ak, d£97# = dimF(Ak)’g‘,
and

dA :dlmF<A1@@Am)“: Z dA

S8,g,1 ° g k,g,p*
ke[l,m]

In this way one has:

1+d2 if g=|us|, p=+andie[l,m—1]
Uigul = { o (9)

A .
dgs g otherwise
In a similar way, we denote by Y; the set of all controlling variables occurring in

f,gil)’Al, cee f(LZ,Am' We conclude with the following:

Definition 14. Let A = UT(EP (Ay,...,An), if m > 1 we denote by

v
fhly~~7h7n7u1wuyu'rnfl:A
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the (Cp, *)-graded polynomial obtained by alternating in Trn

S RmsULyee s Um—1,

ables of the set U; 4 ,,, for each i € [1,v], g € C, and p € {+,—}.

4 the vari-

Now we choose suitable C,-degrees for each of the variables u1, ..., um—1. More pre-
cisely, similarly to what was considered in the proof of Theorem 3, we define:

i hy if Ay = ]\4'7“C or Ay, = Mnk D Mﬁf
T plhe — 1)+ 1 if Ay = M, (D) or Ay, = M,, (D) & M, (D)°,

and, for k=1,...,m—1,

|kl P xgy = gk = (i) " " (ip41)

therefore the variable uy and the element e;,;, ., ® exr41 of J(A) have the same C)p-
degree.

Proposition 18. Let A = UT(EP (Ay,..., Ap) with m > 1. If the variables uy, ..., Um—_1
have the C,-degrees defined before, then the polynomial f,’;l A

S m,UL,..

1,4 1S MOt @
(Cp, *)-graded polynomial identity for A.

Proof. Let us recall that, by our assumption, o (h;) has maximal weight for all k €
[1,m]. Hence, by Proposition 16, for each k € [1,m] there exists a (C,, *)-evaluation
€hy, 4, on the bases L(Ay) and By of Ay such that

éhkaAk (fi’:k,Ak> = ﬁ-hkaAk .

By the x-embedding ¢ we regard these elements as belonging to the algebra A, which
in its turn is, by construction, a (C,, *)-subalgebra of (Mas, &, 025). Clearly we obtain

O(Thy, A1) (€iris @ €12) ** (€ipy iny @ Em—1m)P(Thp, Ay ) = €iriy @ €1m

where the indexes i1, ..., %, are those after the Definition 14. We can glue these evalu-
ations €x, 4, -..,€n,, A, and extend the resulting evaluation by replacing the variables
Uty ..., Um—1 With the elements e;,;, ® 12 + (€54, @ €12)%, ... (€ i @ €m_1m) +
(i, _1i,, @ €m—1m)% which have the same type (g1, +), ..., (gm_1,+) as them. Now we
easily obtain the thesis. O

In the rest of the paper, given the algebra A = UTép(Al, ..., Ap) we will denote
by fx the polynomial considered in Proposition 16, if m = 1, and in Proposition 18, if
m > 1, respectively.
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8. Main results

According to Theorem 4, we have that any minimal variety (see Definition 1) of (C,, *)-
algebras of (C,, *)-exponent d is generated by a suitable upper block triangular matrix
algebra UT(EP (A1,...,Ay), where Aq,... A, are classical finite dimensional (C,, *)-
simple algebras such that dimp(A; @ -+ ® A,,) = d. To provide a characterization of
these varieties we will prove that U T(ép (Ay,...,A,) generates a minimal variety for all
sequences A1, ..., Ay, of such (C,, )-simple algebras.

Let us start with:

Proposition 19. Let A = UT¢ (A1,...,Apn) and B = UTg, (B1,...,By) with the same
(Cp, *)-exponent and let v := m+n—1. If ffx is not a (C,, *)-graded polynomial identity
for B, then A and B are isomorphic as (C,, )-algebras.

Proof. We start by proving that:

(a) d& ,,=d% , , forevery g€ Cpand p € {+,—};
(b) n=m;

(c) either di* = dp for all k € [1,m] or dir =dB_,_, for all k € [1,m].

Since f¥ ¢ Idc, (B), there exists a non-zero (C,,x)-graded evaluation ep of it. The
polynomial J?K is multilinear then we evaluate the designed variables on the elements of
the standard basis £(B) and we evaluate all the remaining variables on the elements of
the canonical basis Bg.

Since the Jacobson radical J(B) is nilpotent of index n there exists [ € [m,m+n — 1]
such that all the variables of U; and Y; must be evaluated only by elements of the
semisimple subalgebra B=B & --& B, of B.

As, for every g € Cp and p € {+,—}, fX alternates in the set Uy, ,, we have that

Ut gul <dB and by (9) we obtain

58,0,

d;“;w Ut g,ul <dssgu for all g € C, and p € {+, —}.
Then
expe, (A)= Y di, . < > db,, =expg (B)=expg, (A)
9€C,y g€C,
nef+.—} nef+—}
and, consequently, we get d4, g = =dB g forevery g € Cpand p € {+, —} which proves
item (a).

As a consequence, the evaluation ep involves for the variables of U; all and only the
elements of the standard basis of B and each one exactly once. Since f¥ A is a sum of
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terms X(f;;l;~~7hm7u17---;um—11A)7 for x ranging in the appropriate group of permutations,
we may assume that

eB(f;il ..... Ao Uty um_l,A) 7é OB'
Since B;B; = Op for all i # j € [1,n], then, for each k € [1,m], the polynomial f}(LQ’Ak
must be evaluated in a unique block of B and so the elements of £;;(B) and £; ;(B)
must appear in polynomials corresponding to different indexes k;, k; € [1, m]. Therefore,
n <m.

If m =1, then n = 1. In this case A and B are classical finite dimensional (C,, %)-
simple algebras having the same dimension. Therefore, by Proposition 17, A and B are
isomorphic as (C,, *)-algebras since fﬁl,x‘h = fx ¢ Idc, (B).

Thus, assume that m > 1. For every j € [1,m — 1], fX alternates in the set Uj Jujl,+
and, by (9), we have

_ A _ B
Ujjus il = 14 di g4 = 1+ A juy) 4

Therefore in the evaluation ep we must use at least m — 1 elements of J(B). This
implies that m — 1 < n and so m < n. Thus m = n and the item (b) is proved also in
this case.

We remark that each of these m—1 elements of J(B) must appear as the evaluation via
ep of one and only one designed variable in the sets Uy, ..., U,,_1. All other variables of
the polynomial f % are necessarily evaluated in elements of B. Moreover, we observe that,
B1J(B)By -+ Bp—1J(B)By, # 0 and B, J(B)By,—1 - B2 JJ(B)B; # 0p, whereas we
obtain Op for every rearrangement of the B;’s into the above sequences. This means that
either the polynomial f}(fk)’ 4, is evaluated in By for all k£ € [1,m] or it is evaluated in
B k41 for all k =1,...,m. The first case is equivalent to say that

WT(EB(f;le,..A,hm,ul,...,um,l,A)) 7& OB7

the second case is equivalent to request

ﬁi(eB(filLll,..A,hm,ul,...,um,l,A)) 7é OB7

where 7T and 7+ are the C,-graded homomorphisms of (Mas, /3) defined as in the proof
of Theorem 3 for (Mag, &).
Let us assume first that 7 (es(f

sSm ULy Um —1,

4)) # Og. Hence
O # ' (e (f}, 4))7" (eB(w1)) - 7' (em (um—1))7" (eB(ff, a,.))- (10)
Because, via eg, the polynomial f,(llk) A, 18 evaluated in By, the whole polynomial fh”k Ax

is evaluated in the same block By and the elements 7' (eg(u1)),..., 7' (en(tm—1) lie
respectively in the subspaces Uy s,...Un—1m, of B. Clearly the above polynomials are
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not identities of By for all k € [1,m]. As first result we have d/ﬁgw < dkB,g’u for all
k € [1,m], g € Cp and pu € {+,—}; which implies d& < dB. Once again we obtain

d& = dB for all k € [1,m] because

expg, (A) =Y dpf <> dP = expg, (B) = expg, (A).
k=1 k=1

In the second case, the polynomial f}(fk)’Ak is evaluated in B, 41— for each k € [1,m)]
and so, as above, dkA = dnBHkk which completes the proof of item (c).

Now we continue the proof with the analysis of the first case.

Let us denote wy = 7' (e (uy)), for all k € [1,m]. As we said above, wy, € U141 and
S0 Wi = (€rye, ® € k+1) for suitable indexes 7y € [1, 5] and ¢x € [1, sk41]. Moreover:

dimpA = dimp B, and fﬁk’Ak ¢ Id;f;p(Bk), for all k€ [1,m].

Hence, by Proposition 17, the diagonal blocks (A, *4,) and (B, 8, *p,) are iso-
morphic as (C,, *)-algebras. From the results on isomorphic classical finite dimensional
(C,, *)-simple algebras contained in the previous sections, specifically Proposition 6, 8
and Corollary 1, it follows that, for each k € [1,m], there exist g, € C, and g € S,
such that

ﬂk _ gkakglzl-

Moreover:

Ok Vn = Yy Ok if A = (M, 0F % 4,),

or =1g, if Ay = M,, (D) or Ay, = M,, (D) ® M,, (D).
We remark that, when Ay = M, © M?, the previous conclusion follows from the proof
of Proposition 8, because WT(eB(ffl;k,Ak)) # 0 and so WT(SB(éakJLk)) # 0 too. As final
result, by Proposition 13, it follows that

n

B2 UTE (A1, An)

where g = (g1, ..., 9m) € C}'. Hence we assume that B = UT(EP g(Al, L ApR).
Let us consider the following subsets of [1,m]:

S ={k | ke [l,m]and Ay, is *-singular}
and
R ={k|ke[l,mand Ay is *-regular}.

Clearly GUR = [1,m] and S NR = (.
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If & = ) then, by Definition 7 and Proposition 13, by multiplying for all k& € [1,m]
the elements of the word gra* by the element g,;l we obtain a finite dimensional (C,, *)-
algebra isomorphic to B. In this way

B = UTE, o(Ar, oo, An) ZUTE, 1 (Av,..., Ap) = A

Similarly, when & = {q} has only one element, let g, = (g4,--.,94) € C;*. In this case,
for all k # ¢, we multiply the word gra* by gqgk_1 and we obtain:

B = UTE, j(Ar,..., An) 2UTE, , (A1,..., An) = A.

p7gq(

Now, let us assume that t,v € & with t < v. In this case we consider the factor of
f;":l,nwhm,ulwu,um—l,A defined by:

f[l;U]rA = f;:thtut T uv_lf’ll/'mA'u'

The C,-degree of this polynomial is af(i;) "'aV(i,) and moreover, since

0B # 7TT(eB(f[’z,v],A)) = WT(eB(f;L/t,At))(eTtCt ®etir1) (Ery ey 1 DCo1 U)WT(C’B(JEIZU,AU))?

we have
o' (i) "t (iy) = o' (1) g Tgua (con).

Since t,v € & by Definitions 7 and 14, Lemmas 6 and 7, it follows i; = hy, 4, = h, and
moreover

al(ry) = a(iy), a¥(cp_1) = a'(i,), thatis g; = go.

Let us indicate by ¢ the common value of g for all k € & and let ¢ = (c,...,c) € C".
Once again, for all k € R, we multiply the word gpa® by cg,;1 and, by Proposition 13,
we have:

B =UT¢ (Ar,... Ap) ZUTE (Ar,..., An) = A,

concluding the proof of our result in the case WT(GB(fﬁl,_“ ho iy 1.A)) 7 OB

)

Finally, when W‘L(GB(f;L/h__ A )) # Og, the result follows by Lemma 3 and

shom Uy um—1,4A
the arguments considered above. O

Remark 4. The isomorphisms of the previous proposition are given by a finite sequence
of basic moves.

As an immediate consequence of the previous proposition we obtain the following
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Theorem 5. Let A = UT¢ (Ay, ..., Ap,) and B = UT(ép(Bl, ..., By), then
A=ZB<& Id(”f;p(A) = ]d(*cp (B).
Now, we conclude with the main result of this paper

Theorem 6. Let V be a variety of (C,,*)-algebras generated by a finite dimensional
(Cp, *)-algebra. Hence, V is minimal of exponent d if and only if V = varg (A) where
A = UTE (Aq,y.. . Ay) with Ay, ..., Ay, classical finite dimensional (Cy, *)-simple al-
gebras sat?sfying dimp(A1 @ ...® A,) =d.

Proof. Let Aj,..., A, be a sequence of classical finite dimensional (C,,*)-simple al-
gebras satisfying dimp(A; @ ... ® A,,) = d and A = UT{ (Ay,..., Ap,). We consider
L{(*:P a subvariety of varz‘:p (A) generated by a finite dimerisional (Cp, *)-algebra such
that expg (A) = expg (UG ). By Theorem 4, we get that there exist classical fi-
nite dimenpsional (Cyp, *)—;impzie algebras By, ..., B, such that, B = UT([*:p (B1,...,Bn),
Ide, (Ug ) C ldc, (B) and expg (Ue ) = expg (B). Since fg is not a (C,, *)-graded
polynorrﬁal identity for A, from %ropgsition 19, pwe can conclude that A and B are iso-
morphic as (Cp, *)-algebras. Consequently, Id¢ (A) = Id¢, (B) and so varg (A) =UE .
Conversely the result follows from Theorem 4. 0O
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