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1. Introduction

Let F be a field of characteristic zero and F 〈X〉 be the free associative algebra on a 
countable set X over F . One of the most interesting problems in PI-theory is that of 
finding numerical invariants allowing to classify the T -ideals of F 〈X〉, i.e. the ideals 
invariant under all endomorphisms of F 〈X〉. There is a well understood connection 
between T -ideals of F 〈X〉 and PI-algebras: every T -ideal is the ideal of polynomial 
identities satisfied by a given F -algebra. If A is an associative PI-algebra over F , i.e. 
an algebra satisfying a non-trivial polynomial identity, a very useful numerical invariant 
that can be attached to Id(A), the T-ideal of identities of A, is given by the sequence of 
codimensions {cn(A)}n≥1. Such numerical sequence was introduced by Regev in [29] and 
measures in some sense the rate of growth of the multilinear polynomials lying in Id(A). 
Regev proved that if A satisfies a non-trivial polynomial identity then its sequence of 
codimensions is exponentially bounded. Later Giambruno and Zaicev (see [17] and [18]) 
captured the exponential growth of this sequence showing that, the exponent of A,

exp(A) := limn→∞
n
√

cn(A)

exists and is a non-negative integer. Afterwards the same approach has been applied 
to study the corresponding polynomial identities of algebras endowed with additional 
structures such as superalgebras, group graded algebras, algebras with involution, graded 
algebras with involutions. Besides their own interesting features, the main motivations 
for this type of work are the important information on fairly general issues that the 
additional structure and related objects may provide. For instance this is the case for 
the solution of the Specht problem due to Kemer (see [25]) in which Z2-gradings play a 
fundamental role.

In this paper we deal with (G, ∗)-algebras, namely associative algebras graded by a 
finite abelian group G and endowed with a graded involution ∗, and the growth of their 
(G, ∗)-codimensions. If A is a PI-algebra, it follows from the literature, for instance see 
[21, Lemma 10.1.3], that the sequence {c(G,∗)

n (A)}n≥1 of (G, ∗)-codimensions is exponen-
tially bounded, moreover, as in the ordinary case, the existence of the (G, ∗)-exponent 
has been confirmed in [22] in the finite-dimensional case. Obviously this statement ap-
plies to commutative graded algebras (which can be seen as (G, ∗)-graded algebras with 
trivial involution) and algebras with involutions (which are nothing but (G, ∗)-graded 
algebras endowed with trivial grading), but it was independently proved for PI-algebras 
graded by a finite group in [1] and for ∗-PI algebras with involution- in [16] without fur-
ther restrictions. In particular, the last mentioned paper is based on the Representability 
Theorem as presented in [2], where a crucial role is just played by superinvolutions and 
graded involutions of a superalgebra. More precisely, any PI-algebra with involution is 
∗-PI equivalent to the Grassmann envelope G(A) = A⊗̂E of a finite dimensional superal-
gebra A equipped by some superinvolution ∗. Notice that the involution on G(A) induced 
by ∗ and by the parity automorphism of E is indeed a graded involution. Superalgebras 
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endowed with a superinvolution play a natural and relevant role in the Theory of Lie and 
Jordan superalgebras [24], [28] and have recently become a subject of increasing interest 
and extensive investigations in PI-Theory (see [23], [15], [9]).

In this context the previous results represent the most significant developments of the 
quantitative investigation of the corresponding polynomial identities satisfied by algebras 
in these classes. The important feature of the existence of the exponent is that it provides 
a measure of the growth of any variety: in particular, it allows to classify varieties on an 
integral scale whose steps are the minimal varieties of given exponent d, namely those 
varieties of exponent d such that every proper subvariety has exponent strictly less than d. 
A deep outcome in this direction is obtained in [20] with the characterization of minimal 
varieties of given exponent d. Previously the same authors in [19] proved that a variety 
of PI-algebras of finite basic rank or affine variety, i.e. generated by a finitely generated 
algebra, is minimal if it is generated by an upper block triangular matrix algebra. Along 
this line in [10] the minimal varieties of finite-dimensional algebras with involution were 
completely described. Sviridova proved that actually any affine ∗-variety can be generated 
by a finite dimensional ∗-algebra [31]. In [12] the authors characterized minimal varieties 
of Cp-graded PI-algebras in the affine case, where Cp is a cyclic group of order a prime p. 
Recently the classification of minimal affine varieties of PI ∗-superalgebras was obtained 
in [13].

In this paper we consider the varieties of (Cp, ∗)-algebras for an odd prime p: our goal 
is the classification of those which are minimal of a given exponent. It is proved that a 
variety of (Cp, ∗)-algebras generated by a finite dimensional (Cp, ∗)-algebra is minimal of 
fixed exponent if and only if it is generated by an upper block triangular matrix algebra 
equipped with a suitable elementary grading and graded involution (see Theorem 6).

2. Algebras with graded involution and polynomial identities

Let F be a field of characteristic zero and G a finite group. Throughout this paper all 
algebras are assumed to be associative and to have the same ground field F so we will 
normally drop the word associative in what follows.

An algebra A is a G-graded algebra if A can be written as a direct sum of vector 
spaces A =

⊕
g∈G Ag such that AgAh ⊆ Agh, for all g, h ∈ G. The subspaces Ag

are called homogeneous components of A of degree g and an element a ∈ Ag is called 
homogeneous of degree g, we denote its degree by |a|A = g.

A subspace V of A is graded if V =
⊕

g∈G(V ∩ Ag). Similarly, we define graded 
subalgebras and ideals of A.

Recall that an involution ∗ on an algebra A is an antiautomorphism of A of order at 
most two. An algebra A endowed with an involution ∗ is called a ∗-algebra. In this case 
we write A = A+ ⊕ A− where A+ = {a ∈ A | a∗ = a} and A− = {a ∈ A | a∗ = −a}
denote the subspaces of symmetric and skew-symmetric elements of A, respectively.

Given a G-graded algebra A =
⊕

g∈G Ag endowed with an involution ∗, we say that ∗
is a graded involution if it preserves the homogeneous components of A, i.e. if A∗

g ⊆ Ag, 
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for all g ∈ G. A G-graded algebra endowed with a graded involution is called (G, ∗)-
algebra.

Moreover, for each g ∈ G, we denote by A+
g and A−

g the subspaces of symmetric 
and skew-symmetric elements of Ag, respectively. We say that (g, μ) is the type of the 
homogeneous element a belonging to Aμ

g , where μ ∈ {+, −}.
An isomorphism of algebras φ : A → B from a (G, ∗)-algebra A to a (G, ̄∗)-algebra B

is an isomorphism of (G, ∗)-algebras if φ(Ag) ⊆ Bg, for all g ∈ G, and φ(a∗) = φ(a)∗̄, for 
all a ∈ A. In this case, we say that A and B are isomorphic as (G, ∗)-algebras.

Let F 〈XG〉 denote the free associative G-graded algebra on the countable set XG

over F . Here the set XG decomposes as XG =
⋃

g∈G Xg the union of disjoint countable 
sets Xg = {x1,g, x2,g, . . .}, where g ∈ G and the elements of Xg have degree g. The free 
algebra F 〈XG〉 has a natural G-grading F 〈XG〉 =

⊕
g∈G Fg, where Fg is the subspace 

spanned by the monomials xi1,gj1
· · ·xit,gjt

of homogeneous degree g = gj1 · · · gjt .
Let us now consider the free algebra with involution F 〈XG, ∗〉 which is a (G, ∗)-algebra 

if we assume also that, for each variable xi,g, x∗
i,g is homogeneouos of degree g. F 〈XG, ∗〉

is said to be the free (G, ∗)-algebra over F .
If A =

⊕
g∈G Ag is a (G, ∗)-algebra, an element f = f(x1,g1 , x

∗
1,g1

, . . . , xn,gn , x
∗
n,gn) ∈

F 〈XG, ∗〉 is a (G, ∗)-polynomial identity of A if f(a1,g1 , a
∗
1,g1

, . . . , an,gn , a
∗
n,gn) = 0 for all 

ai,gi ∈ Agi , i = 1, . . . , n. In this case we write f ≡ 0 on A. The set of all (G, ∗)-polynomial 
identities satisfied by A

Id∗G(A) = {f ∈ F 〈XG, ∗〉 | f ≡ 0 onA}

is an ideal of F 〈XG, ∗〉 called the ideal of (G, ∗)-identities of A. It is easy to show that 
Id∗G(A) is a T ∗

G-ideal of F 〈XG, ∗〉, i.e. a two-sided ideal of the free (G, ∗)-algebra invariant 
under all endomorphisms of F 〈XG, ∗〉 that preserve the G-structure and commute with 
the graded involution ∗. Now, let

P (G,∗)
n = {xγ1

σ(1),g1
· · ·xγn

σ(n),gn | σ ∈ Sn, γi ∈ {1, ∗}, i = 1, . . . , n}

be the space of all multilinear (G, ∗)-polynomials of degree n. Since charF=0, standard 
Vandermonde arguments and linearization process prove that Id∗G(A) is completely de-
termined by its multilinear polynomials, then the study of Id∗G(A) is equivalent to that 
of P (G,∗)

n ∩ Id∗G(A) for all n ≥ 1. As in the ordinary case (see [29]), one defines the n-th 
(G, ∗)-codimension of A as

c(G,∗)
n (A) = dimF

P
(G,∗)
n

P
(G,∗)
n ∩ Id∗G(A)

.

If A is a PI-algebra, i.e. it satisfies an ordinary polynomial identity, it can be easily proved 
that the relation between the ordinary codimensions cn(A) and the (G, ∗)-codimension 
of A is given by the inequalities
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cn(A) ≤ c(G,∗)
n (A) ≤ 2n|G|ncn(A),

hence the sequence {c(G,∗)
n (A)}n≥1 is exponentially bounded.

A (G, ∗)-algebra can be viewed as an algebra with a generalized F [G × Z2]-action, 
where G × Z2 acts on it by automorphisms and antiautomorphisms. If A is a finite 
dimensional (G, ∗)-algebra, Gordienko in [22] captured its exponential growth proving 
that the (G, ∗)-exponent of A

exp∗
G(A) = lim

n→∞
n

√
c
(G,∗)
n (A)

exists and it is a non-negative integer.
He actually provides an explicit formula to compute the (G, ∗)-exponent which is a 

natural generalization of that for the ordinary PI-exponent. If A is a finite dimensional 
(G, ∗)-algebra, since F is a field of characteristic zero, Id∗G(A) = Id∗G(A ⊗F L) ∩F 〈XG, ∗〉
for any extension field L of F then also the (G, ∗)-codimensions of A do not change upon 
extension of the base field. Hence we can assume that F is algebraically closed. By the 
generalization of the Wedderburn-Malcev Theorem, we can write

A = A1 ⊕ · · · ⊕Am + J,

where A1, . . . , Am are (G, ∗)-simple algebras, and J = J(A) is the Jacobson radical of A
which is a T ∗

G-ideal. We recall that A is called (G, ∗)-simple algebra if A2 �= {0} and it 
has no non-zero (G, ∗)-ideals.

We say that a subalgebra Ai1 ⊕ · · · ⊕Aik of A, where Ai1 , . . . , Aik are distinct (G, ∗)-
simple components, is admissible if for some permutation (l1, . . . , lk) of (i1, . . . , ik) we 
have that Al1J · · ·JAlk �= 0. Moreover, if Ai1 ⊕ · · · ⊕Aik is an admissible subalgebra of 
A then A′ = Ai1 ⊕ · · · ⊕Aik + J is called a reduced (G, ∗)-algebra.

The notion of admissible (G, ∗)-algebra is closely linked to that of (G, ∗)-exponent in 
fact, in [22], it was proved that exp∗

G(A) = d where d is the maximal dimension of an 
admissible subalgebra of A. It follows immediately that

Remark 1. If A is a (G, ∗)-simple algebra then exp∗
G(A) = dimFA.

It is often more useful to study (G, ∗)-algebras up to PI-equivalence, then it is con-
venient to use the language of varieties. Let I be a T ∗

G-ideal of F 〈XG, ∗〉 and V the 
variety of (G, ∗)-algebras associated to I, i.e. the class of all (G, ∗)-algebras A such that 
I is contained in Id∗G(A). We put I = Id∗G(V). Since Id∗G(V) = I = Id∗G(A), for some 
(G, ∗)-algebra A, we say that the variety V is generated by A and we write V = var∗G(A), 
exp∗

G(V) = exp∗
G(A) if exp∗

G(A) exists. We call exp∗
G(V) the (G, ∗)-exponent of the variety 

V.
To ensure the existence of the (G, ∗)-exponent, in this paper we consider only varieties 

generated by finite dimensional (G, ∗)-algebras and we introduce the following definition:
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Definition 1. A variety V generated by a finite dimensional (G, ∗)-algebra is said to be
minimal of (G, ∗)-exponent d if

exp∗
G(V) = d and exp∗

G(U) < d

for every proper subvariety U of V generated by a finite dimensional (G, ∗)-algebra.

Our main purpose is to characterize the minimal varieties of (G, ∗)-algebras when G
is a finite group of order an odd prime p (see Theorem 6).

We emphasize that our result would hold in its full generality in the context of affine 
varieties if a representability theorem for finitely generated (G, ∗)-algebras satisfying a 
polynomial identity were proved.

More precisely, every finitely generated (G, ∗)-algebra satisfying a polynomial identity 
would be equivalent to a finite-dimensional (G, ∗)-algebra (representability theorem). All 
subvarieties of an affine variety would themselves be affine, and consequently would be 
generated by a finite-dimensional (G, ∗)-algebra. This is precisely the case in which G 
has order 2 (see [15, Theorem 5.3]).

However, since the validity of this representability theorem has not yet been confirmed, 
in this paper we preferred to state our result only for varieties generated by finite-
dimensional (G, ∗)-algebras as specified above and in Theorem 6.

3. Elementary gradings on matrix algebras and graded involutions

In this section, we focus our study on the graded involutions on matrix algebras with 
elementary gradings. Let us recall that the elementary gradings play a fundamental role 
in the classification of all G-gradings on matrix algebras over an algebraically closed 
field. Moreover, as a consequence of this classification, one has that when G is a finite 
cyclic group and the field F is algebraically closed then any G-grading over Mn(F ) is 
isomorphic to an elementary grading.

An explicit classification of graded involutions on matrix algebras was made by Bah-
turin and Zaicev in [8] (see also [7] and [4]). Here we present a different description of 
their result in the case of elementary gradings that we will use for the classification of 
finite dimensional (G, ∗)-simple algebras when G = Cp is finite of order an odd prime p.

We fix the notation throughout the paper: for any ring R and pair of positive integers 
s and t let Ms×t(R) denote the space of all matrices with s rows and t columns over 
R and set Ms(R) = Ms×s(R). If R = F , we simply write Ms×t and Ms instead of 
Ms×t(F ) and Ms(F ), respectively. Setting from now on, for every positive integers m, n
with m ≤ n, [m, n] := {m, m + 1, . . . , n}, we denote by eij the usual (i, j)-matrix unit of 
Mn, i, j ∈ [1, n]. Also we indicate by In the n × n matrix identity of Mn and by Jn the 
matrix of Mn with all ones in the secondary diagonal and zeros in the other entries
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Jn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 1
... 1 0
...

...

0 1
...

1 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mn.

Let us recall that a G-grading on Mn =
⊕

g∈G(Mn)g is an elementary grading if 
there exists an n-tuple (g1, . . . , gn) ∈ Gn such that the matrix units eij, i, j ∈ [1, n], are 
homogeneous and eij ∈ (Mn)g if and only if g = g−1

i gj . In an equivalent manner we have 
the following

Definition 2. Let n be a positive integer, and let En := {eij | i, j ∈ [1, n]} be the canonical 
basis of matrix units of Mn. For any map α : [1, n] → G, we write αi = α(i) and define 
|eij |α := α−1

i αj . The resulting grading on Mn is called the elementary grading induced 
by α.

We write (Mn, α) to denote the matrix algebra equipped with an elementary grading 
induced by α. Also we write (Mn, α, ∗) when ∗ is a graded involution on (Mn, α).

In this section, if it is not explicitly stated, G is a finite abelian group. Before of 
proceeding, recall some considerations and results on elementary gradings and multilinear 
polynomials that we shall frequently use throughout the paper (see Section 2 of [11]). 
First of all we recall:

Proposition 1. The algebras (Mn, α) and (Mn, β) are graded isomorphic if and only if 
there exist h ∈ G and a permutation � in the symmetric group Sn such that

β�(i) = hαi for all i ∈ [1, n].

In this case the linear map

�̃ : (Mn, α) −→ (Mn, β) eij �−→ e�(i)�(j)

is the graded isomorphism and there exists a permutation-matrix C ∈ Mn such that

�̃(x) = CxC−1 for all x ∈ Mn.

At the light of the previous proposition we say that α and β are equivalent and we 
write α ∼ β if and only if there exist h ∈ G and � ∈ Sn such that β�(i) = hαi for all 
i ∈ [1, n].

Now, given α : [1, n] −→ G we denote by Iα the image of α, that is Iα = α([1, n]), we 
consider the corresponding weight map wα : G −→ N defined by

wα(g) = |{i | 1 ≤ i ≤ n, α(i) = g}|
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and we define the invariance subgroup of α by

Hα := {h |h ∈ G, wα(hg) = wα(g) for all g ∈ G}.

Clearly, α and β are equivalent if and only if there exists h ∈ G such that wβ(x) = wα(hx)
for all x ∈ G. In this case we obtain Hα = Hβ hence, given the matrix algebra A = Mn

endowed with an elementary G-grading, we can define the invariance subgroup of A by 
HA = Hα, where α is any map inducing the grading.

Now let us consider the polynomials ΦA and ΨA introduced in [11], using a more 
appropriate notation. More precisely, if α : [1, n] −→ G let g̃ = (g1, . . . , gr) be a fixed 
sequence of all the elements of Iα in some order, we consider the derived sequence 
(h1, . . . , hr−1) defined by ht = g−1

t gt+1 for all t = 1, . . . , r − 1 and the corresponding 
weight vector m̂ = (m1, . . . , mr) = (wα(g1), . . . , wα(gr)). Now, as pointed out in [11], if 
A = (Mn, α) the definition of ΦA depends only on the sequence g̃ = (g1, . . . , gr) and α
of course. In this paper we denote ΦA as

Φα,g̃ = Φα,g̃(y1, . . . , y2n−r, z1, . . . zr−1) =

Stn1(y1, . . . , yn1)z1 Stn2(yn1+1, . . . , yn1+n2)z2 · · · zr−1 Stnr
(yn1+···+nr−1+1, . . . , y2n−r),

where n = m1+· · ·+mr is the size of A, ni = 2mi−1, for all i = 1, . . . , r, y1, . . . , y2n−r are 
homogeneous variables of degree 1G, whereas z1, . . . , zr−1 are homogeneous variables of 
degree h1, . . . , hr−1 respectively and Stt(x1, . . . , xt) =

∑
σ∈Sn

(−1)σxσ(1) · · ·xσ(t) denotes 
the standard polynomial of degree t.

With the same notation, we consider the inverse order g̃∗ = (gr, . . . , g1) of the ele-
ments of Iα, so the derived sequence becomes (h−1

r−1, . . . , h
−1
1 ), the associated vector m̂∗

is (mr, . . . , m1) and the corresponding polynomial is Φα,g̃∗(y′1, . . . , y′2n−r, z
′
1, . . . , z

′
r−1). 

Here we use a set of homogeneous variables {y′1, . . . , y′2n−r, z
′
1, . . . , z

′
r−1} disjoint from 

that of the variables of Φα,g̃, and, as above y′1, . . . , y
′
2n−r have degree 1G while z′1, . . . , z

′
r−1

have degree h−1
r−1, . . . , h

−1
1 respectively. We write

Φ̃α,g̃ = Φα,g̃(y1, . . . , y2n−r, z1, . . . zr−1)Φα,g̃∗(y′1, . . . , y′2n−r, z
′
1, . . . , z

′
r−1).

Clearly, for a fixed i ∈ [1, n], there exists a natural way to determine an order 
−→α i of all the elements of Iα: simply by reading from left to right the sequence 
(αi, αi+1, . . . , αn, α1, . . . , αi−1) and writing the different elements that occur in it with 
their weight. In this way g1 = αi and m1 = wα(αi). Finally we denote by Φ̃α,i the 
corresponding polynomial, that is

Φ̃α,i = Φ̃α,−→α i
.

As an easy consequence of Lemma 2.2 of [11] and its proof we obtain:

Proposition 2. Let A = (Mn, α), i ∈ [1, n] and consider the polynomial Φ̃α,i, then
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(a) Φ̃α,i is a multilinear polynomial of F 〈XG〉 of G-degree 1G;
(b) Φ̃α,i is not a graded polynomial identity of A, more precisely there exists a suitable 

graded evaluation μ̃ : F 〈XG〉 −→ (Mn, α) at matrix units such that μ̃(Φ̃α,i) = eii;
(c) If B = (Mn, β) and Φ̃α,i /∈ IdG(B) then β is equivalent to (g1, . . . , g1︸ ︷︷ ︸

m1

, . . . . . . ,

gr, . . . , gr︸ ︷︷ ︸
mr

). In particular (Mn, α) and (Mn, β) are isomorphic as G-graded algebras.

Similarly we denote by Ψα,h the polynomial ΨA introduced in Lemma 2.5 of [11] since 
its definition actually depends only on the map α : [1, n] −→ G, on the fixed sequence 
g̃ = (g1, . . . , gr) of all the elements of Iα in some order and on the choice of an index 
h ∈ [1, n]. More precisely,

Ψα,h = ψ1 · · ·ψr,

where, for every j ∈ [1, r],

ψj =
∑

σ∈Stj

(−1)σu(j)
σ(1)v

(j)
1 u

(j)
σ(2)v

(j)
2 · · ·u(j)

σ(tj)v
(j)
tj

with tj = mhmj and {u(1)
1 , . . . , u(1)

t1 }, . . . , {u(r)
1 , . . . , u(r)

tr }, {v(1)
1 , . . . , v(1)

t1 }, . . . , {v(r)
1 , . . . ,

v
(r)
tr } pairwise disjoint sets of homogeneous variables of degree deg(u(j)

l ) = g−1
h gj and 

deg(v(j)
l ) = g−1

j gh, for any l ∈ [1, tj ]. Moreover, if αh has maximal weight then for Ψα,h

the same conclusions of that lemma hold. More specifically, we have:

Proposition 3. Let A = (Mn, α), h ∈ [1, n] and consider the polynomial Ψα,h, then

(a) Ψα,h is a multilinear polynomial of F 〈XG〉 of G-degree 1G;
(b) If αh has maximal weight, then Ψα,h is not a graded polynomial identity of A, and 

there exists a suitable graded evaluation μ : F 〈XG〉 −→ (Mn, α) at matrix units such 
that μ(Ψα,h) = ehh;

(c) If μ̄ is a graded evaluation then

μ̄(Ψα,h) ⊆ spanF {eij |αi = αj = gαh, for some g ∈ Hα}.

Now we return to the study of graded involutions on matrix algebras, introducing an 
important class of involutions on Mn of transpose type.

Definition 3. Let n be a positive integer, and let γ ∈ Sn be a permutation of [1, n] such 
that γ2 = id. We define an involution θγ on Mn by eθγij = eγ(j)γ(i) for all i, j ∈ [1, n].

Let (g1, . . . , gn) ∈ Gn be the n-tuple defining the G-grading on Mn, since G is abelian 
θγ is a graded involution on Mn if and only if
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gigγ(i) = gjgγ(j) for all i, j ∈ [1, n]. (1)

When γ = γn,q, with 2q ≤ n, is the permutation on [1, n] defined by

γn,q(i) =
{

n + 1 − i, if i ∈ [1, q] ∪ [n + 1 − q, n]
i, if i ∈ [q + 1, n− q],

we denote the corresponding involution θγ simply by θn,q. Note that the number of fixed 
points of γn,q is exactly n −2q. When n −2q = 0 or 1 we denote by γn and θn respectively 
the corresponding map and involution. In this case

eθnij = en+1−j n+1−i for all i, j ∈ [1, n]

and θn is called the reflection involution.
When q = 0 then θn,0 is the classical transpose involution defined by etij = eji. Finally, 

when n = 2m is an even positive integer we denote by σn the symplectic type involution
on Mn defined by:

eσn
ij = δ[1,m](i)δ[1,m](j)eθnij = δ[1,m](i)δ[1,m](j)en+1−j n+1−i for all i, j ∈ [1, 2m]

where

δ[1,m](i) =
{

1 if i ∈ [1,m]
−1 otherwise.

The description of the involution defined on any finite dimensional central simple 
algebra (see, for example, [30, Chapter 3]) is well known. Here we recall only the following 
result:

Proposition 4. Let F be an algebraically closed field of characteristic zero, and let ∗ be 
an involution on Mn. Then either ∗ is of transpose type and

(Mn, ∗) ∼= (Mn, t) ∼= (Mn, θn)

or n is even, ∗ is of symplectic type and

(Mn, ∗) ∼= (Mn, σn).

Once again, θn and σn are graded involutions on Mn with respect the elementary 
G-grading induced by (g1, . . . , gn) if and only if

gign+1−i = gjgn+1−j for all i, j ∈ [1, n]

and n is even in the symplectic case.
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Now we recall the duality between the involutions on the matrix algebra Mn and the 
bilinear forms on the vector space V = Fn. If

ϕ : V × V → F

is a non-degenerate bilinear form, for any X ∈ End(V ), a, b ∈ V , the relation

ϕ(Xa, b) = ϕ(a,X∗b),

defines an antiautomorphism ∗ : End(V ) → End(V ). If B is a fixed basis of V then, in 
the matrix form, ∗ can be written as

X∗ = (Φ−1)XtΦ,

where Φ is the matrix of ϕ with respect to B and, as above, t is the transpose involution 
on Mn. This antiautomorphism is of order two if and only if ϕ is symmetric or skew-
symmetric. Conversely, by Noether Skolem Theorem (see [26]) any involution ∗ of Mn is 
of the previous form with Φt = ±Φ and Φ is uniquely defined by ∗ up to a scalar factor. 

Clearly Φ = Jn when ∗ = θn and Φ =
(

0 Jm
−Jm 0

)
when n = 2m and ∗ = σn.

The relevance of the graded involutions defined above is expressed in the following 
result

Proposition 5. Let (Mn, α, ∗) be a matrix algebra over an algebraically closed field of 
characteristic zero F , with elementary G-grading α and graded involution ∗ defined by a 
non-degenerate bilinear form ϕ.

(a) If ϕ is symmetric then, for some integer q such that 0 ≤ 2q ≤ n, (Mn, α, ∗) is iso-
morphic as (G, ∗)-algebra to (Mn, ̃g, θn,q) where the elementary G-grading is defined 
by a n-tuple g̃ = (g1, . . . , gn) ∈ Gn satisfying

gigγn,q(i) = gjgγn,q(j) for all i, j ∈ [1, n].

Moreover:
• if |G| is odd, then (Mn, α, ∗) is isomorphic as a (G, ∗)-algebra to (Mn, ̃g, θn);
• if |G| = 2, that is Mn is a ∗-superalgebra, then either (Mn, α, ∗) is isomorphic 

to the ∗-superalgebra (Mq,q, θ2q) for some q such that n = 2q or (Mn, α, ∗) is 
isomorphic to (Mm1,m2 , t) for some m1 � m2 such that n = m1 + m2.

(b) If ϕ is skew-symmetric then n = 2m is an even integer and (Mn, α, ∗) is isomorphic 
as (G, ∗)-algebra to (Mn, ̃g, σn) where the elementary G-grading is defined by the 
n-tuple g̃ = (g1, . . . , gn) ∈ Gn satisfying

gign+1−i = gjgn+1−j for all i, j ∈ [1, n].
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Proof. Let A = Mn =
⊕

g∈G(Mn)g be a matrix algebra with an elementary G-grading 
induced by α : [1, n] → G. Let Iα = {h1, . . . , hk} ⊆ G and mi = wα(hi) the weight of hi

in α, for all i ∈ [1, k]. Recall that the elementary G-grading defined by α can be viewed 
as an induced grading on the algebra of all linear transformations of a G-graded vector 
space V = V1⊕· · ·⊕Vk with degVi = hi

−1 and dimF Vi = mi. Fixing any bases in Vi we 
obtain an elementary grading on Mn isomorphic to the initial one such that any matrix 
M is decomposed into k2 blocks

M =

⎛
⎜⎝

M11 · · · M1k
...

...
Mk1 · · · Mkk

⎞
⎟⎠ ,

where Mij is of order mi ×mj and all matrix units of this block are of degree h−1
i hj in 

the G-grading.
Clearly M is a homogeneous element of degree 1G if and only if Mrs = 0 for all r �= s. 

It follows that

A1G
∼= Mm1 ⊕ · · · ⊕Mmk

and A1G
decomposes in the direct sum I1 ⊕ · · · ⊕ Ik of its minimal two-sided ideals 

I1, . . . , Ik, where Ih ∼= Mmh
for all h = 1, . . . , k.

Since ∗ is a graded involution of Mn, then it induces an involution on A1G
and so 

I∗h is in {I1, . . . , Ik} for all h ∈ [1, k]. Then there exists a bijection η : [1, k] → [1, k]
such that I∗j = Iη(j) and so mj = mη(j). We observe that η2 = id and moreover, for all 
r, s ∈ [1, k], we have

(IrA1G
Is)∗ = I∗sA

∗
1G

I∗r = Iη(s)A1G
Iη(r).

Now |IrA1G
Is|α = h−1

r hs, so we obtain that

h−1
r hs = |IrA1G

Is|α = |(IrA1G
Is)∗|α = |Iη(s)A1G

Iη(r)|α = h−1
η(s)hη(r)

and so

hrhη(r) = hshη(s) = c, for all r, s ∈ [1, k]. (2)

If 1h =
∑

i∈[1,mh] eii is the identity of Mmh
∼= Ih, then 1∗h = 1η(h).

As observed before the involution ∗ of Mn can be written as

X∗ = (Φ−1)XtΦ,

where Φ is the matrix of the non-degenerate bilinear form ϕ with respect a fixed basis 
B of V associated to ∗, Φt = ±Φ, and t stands for the transpose involution on Mn. By 
the above equality we get
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ΦX∗ = XtΦ

and in particular we have

Φ1η(h) = 1hΦ,

for all h ∈ [1, k]. Now, by writing the matrix Φ in the form

Φ = Σr,s∈[1,k]Φ̄rs =

⎛
⎜⎝

Φ̄11 · · · Φ̄1k
...

...
Φ̄k1 · · · Φ̄kk

⎞
⎟⎠ ,

the previous formula becomes

Σr∈[1,k]Φ̄rη(h) = Σs∈[1,k]Φ̄hs

and we obtain

Φ̄hs = 0, ∀s �= η(h).

That is in any column and in any row of Φ there exists exactly one non-zero block and 
the subspaces Vr and Vs are orthogonal to each other with respect to Φ for all r, s such 
that s �= η(r).

Now, we consider F = {r ∈ [1, k] | η(r) = r} and S = {s ∈ [1, k] | η(s) �= s}. Clearly S
splits in orbits of length 2 under the action of η and we write S = S′ ∪ η(S′), where S′

is a complete set of representatives of these orbits.
We put Wr = Vr for all r ∈ F and Wr = Vr ⊕Vη(r) for all r ∈ S′. We remark that Wr

is a graded subspace of V , ϕ induces on Wr a non-degenerate bilinear form and moreover 
Wr and Ws are orthogonal to each other with respect to Φ, for all r, s ∈ F ∪S′, r �= s. 
Let Φr be the matrix of ϕ restricted to Wr.

If Φ is symmetric, then every Φr is symmetric and we can choose convenient basis of 

Wr such that, ∀r ∈ F, Φr = Imr
∈ Mmr

and, ∀r ∈ S′, Φr =
(

0 Jmr

Jmr
0

)
∈ M2mr

. 

Finally, we put Wi = Ui for all i ∈ F. If h = |F| and 2l = |S| with l = |S′|, then 
reordering the bases appropriately we can write

V = Vr1 ⊕ · · · ⊕ Vrl ⊕ Us1 ⊕ · · · ⊕ Ush ⊕ Vη(rl) ⊕ · · · ⊕ Vη(r1)

and

Φ =

⎛
⎜⎝ 0 0 Jq

0 Im 0
J 0 0

⎞
⎟⎠
q
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where m =
∑

i∈F
mi, q =

∑
i∈S′ mi and n = m + 2q. Clearly the involution on Mn is 

θn,q and the elementary grading on Mn
∼= EndV comes rearranging the given n-tuple 

(α(1), . . . , α(n)) accordingly to this decomposition of V . By (2) it follows that the grading 
on Mn is the elementary one induced by (g1, . . . , gn) ∈ Gn satisfying gigγn,q(i) = gjgγn,q(j)
for all i, j ∈ [1, n].

Now, let us assume that G has odd order. If r, s are in F then (2) implies that 
h2
r = hrhη(r) = hshη(s) = h2

s and so hr = hs, that is r = s and |F| ≤ 1. If |F| = 1 then 
the previous decomposition of V becomes

V = Vr1 ⊕ · · · ⊕ Vrl ⊕ Us ⊕ Vη(rl) ⊕ · · · ⊕ Vη(r1)

for some s ∈ [1, k] and Us is the homogeneous component of V having degree h−1
s . Hence, 

by considering an appropriate basis of Us we can assume that Φs = Jms
and so Φ = Jn, 

that is ∗ is the graded involution θn.
If |G| = 2 then k � 2. If S �= ∅ then 2 � |S| � k � 2, hence S = {1, 2} and F = ∅. 

The previous decomposition of V becomes V = V1 ⊕ V2, where η(1) = 2, moreover one 
has m = 0, q = m1 = dimV1 = dimV2 = m2 and n = 2q. In this case the involution on 
Mn is the reflection involution θn and Mn is the superalgebra Mq,q.

When S = ∅ then F = [1, k], q = 0 and the involution θn,0 on Mn is the classical 
transpose t. If k = 1 the grading is the trivial one. If k = 2, the previous decomposition 
of V becomes V = V1⊕V2, where η(i) = i for all i = 1, 2. Moreover one has n = m1 +m2

and so Mn is the superalgebra Mm1,m2 , where we can assume m1 � m2.
Finally, when Φ is skew-symmetric then every Φr is skew-symmetric. For all r ∈ S′

we can choose basis of Wr such that Φr =
(

0 Jmr

−Jmr
0

)
∈ M2mr

.

If r belongs to F then the subspace Wr is homogeneous of degree h−1
r and its dimension 

mr is an even integer 2nr. In this case we have Φr =
(

0 Jnr

−Jnr
0

)
∈ M2nr

and we 

can write Wr = Ur ⊕ U ′
r, where nr = dimUr = dimU ′

r.
By properly rearranging the bases, one obtains

V = Vr1 ⊕ · · ·Vrl ⊕ Us1 ⊕ · · · ⊕ Ush ⊕ U ′
sh

⊕ · · · ⊕ U ′
s1 ⊕ Vη(rl) ⊕ · · · ⊕ Vη(r1)

and

Φ =
(

0 Jm
−Jm 0

)

where m =
∑

i∈F
ni +

∑
i∈S′ mi and n = 2m. As above, this decomposition of V deter-

mines on Mn the elementary grading defined by the n-tuple (g1, . . . , gn) satisfying the 
condition gign+1−i = gjgn+1−j for all i, j ∈ [1, n] and we are done. �
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As in the ordinary case, the dimensions of the subspaces Aμ
g identify the isomorphism 

class of the (G, ∗)-algebra of matrices A = (Mn, α, ∗) for any finite group G of odd order. 
More precisely, we have:

Proposition 6. Let A = (Mn, α, ∗A) and B = (Mm, β, ∗B) be matrix algebras with ele-
mentary G-gradings and graded involutions ∗A ∈ {θn, σn} and ∗B ∈ {θm, σm}. If |G| is 
odd the following conditions are equivalent:

(a) A and B are isomorphic as (G, ∗)-algebras;
(b) dimF Aμ

g = dimF Bμ
g , for all g ∈ G and μ ∈ {+, −};

(c) n = m and there exist � ∈ Sn and h ∈ G such that

�γn = γn� and β�(k) = hαk

for all k ∈ [1, n].

Proof. Clearly (a) ⇒ (b).
(b) ⇒ (c). Let us assume that dimF Aμ

g = dimF Bμ
g for all g ∈ G and μ ∈ {+, −}. One 

has

dimF A = dimF B, dimF A+ = dimF B+, dimF A− = dimF B−.

Hence it follows that n = m and, as in the ordinary case, ∗A and ∗B are of the same 
type. More precisely, as above we write γ = γn, so γ(i) = n + 1 − i for all i ∈ [1, n] and 
we consider the standard bases of A and B given by the elements

pij =

⎧⎪⎨
⎪⎩

eij + e∗ij , if i < γ(j)
eij , if i = γ(j)
eij − e∗ij , if i > γ(j)

for all i, j ∈ [1, n]. Here ∗ denotes, depending on the considered case, the involution in A
or that in B. Now, let Δ(A) and Δ(B) be the subspaces linearly generated by the matrix 
units e1γ(1), . . . , enγ(n) in A and B respectively. For all g ∈ G, μ ∈ {+, −} we have:

dimF Δ(A)μg = dimF Δ(B)μg (3)

From the previous condition (3), if α = (g1, . . . , gn) and β = (h1, . . . , hn) there exists 
� ∈ Sn such that g−1

k gγ(k) = |ekγ(k)|A = |e�(k)γ(�(k))|B = h−1
�(k)hγ(�(k)) and γ(�(k)) =

�(γ(k)) for all k ∈ [1, n]. By Proposition 5, there exist a, b ∈ G such that gγ(k) = ag−1
k

and hγ(k) = bh−1
k , for all k ∈ [1, n]. Hence ag−2

k = g−1
k gγ(k) = h−1

�(k)hγ(�(k)) = bh−2
�(k) and, 

since G is abelian of odd order, one has h�(k) = hgk, for some h ∈ G.
(c) ⇒ (a). If ∗A (and ∗B) are of transpose type, then the linear map �̃ : A → B

defined by �̃(eij) = e�(i)�(j) is an isomorphism of (G, ∗)-algebras. If ∗A (and ∗B) are of 
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symplectic type, then n = 2q and we consider the linear map ψ : A → B defined by 
ψ(eij) = ε(i)ε(j)e�(i)�(j) where

ε(i) =
{

−1 if i ∈ [1, q] and �(i) /∈ [1, q]
1 otherwise.

Clearly |ψ(a)|B = |�̃(a)|B = |a|A for all homogeneous element a ∈ A and a straightfor-
ward calculation shows that ψ is indeed an isomorphism of (G, ∗)-algebras. �

Let us emphasize that the isomorphisms of the previous proposition are defined by

�̃(x) = CxC−1 and ψ(x) = ExE−1 (4)

where C is the permutation-matrix related to � while E is a generalized permutation-
matrix, obtained from C by changing 1 to −1 in the appropriate places. More precisely

C =
n∑

i=1
e�(i) i and E =

n∑
i=1

ε(i)e�(i) i.

Remark 2. If A and B are (G, ∗)-algebras then also A ⊗B is in a natural way a (G, ∗)-
algebra. More precisely

|a⊗ b|A⊗B = |a|A|b|B

for all homogeneous elements a ∈ A, b ∈ B and the involution ∗A⊗B is the map defined 
by tensorising the involutions of A and B, that is ∗A⊗B = ∗A ⊗ ∗B and

(a⊗ b)∗A⊗B = a∗A ⊗ b∗B

for all a ∈ A and b ∈ B.

When B is a matrix algebra we have:

Remark 3. Let B = (Mn, β, ∗B) be the (G, ∗)-algebra of n ×n-matrices endowed with the 
elementary G-grading defined by the map β. Since G is abelian, if A is a (G, ∗)-algebra 
then A ⊗B = A ⊗Mn is isomorphic as (G, ∗)-algebra to Mn(A) via the map

a⊗ eij �→ aeij

where the involution on Mn(A) is the natural one, that is (aeij)∗ = a∗Ae∗B
ij and the 

grading is defined, as in [5], by

|aeij | = β(i)−1|a|Aβ(j).
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Finally, it is straightforward to prove the following result:

Proposition 7. Let m, n be positive integers and μ : [1, m] ×[1, n] → [1, mn] be the bijection 
defined by μ(r, i) = m(i − 1) + r then:

(Mm, α, θm) ⊗ (Mn, β, θn) ∼= (Mmn, α⊗ β, θmn)

(Mm, α, θm) ⊗ (Mn, β, σn) ∼= (Mmn, α⊗ β, σmn)

as (G, ∗)-algebras, where α⊗ β : [1, mn] → G is defined by (α⊗ β)(h) = α(r)β(i) for all 
h = m(i − 1) + r ∈ [1, mn] and the isomorphism is given by

ers ⊗ eij �→ eμ(r,i)μ(s,j)

for all r, s ∈ [1, m] and i, j ∈ [1, n].

Let us recall that given a G-graded algebra A then the opposite algebra Aop has a 
natural G-grading defined by Aop

g = Ag, for all g ∈ G, because A and Aop have the same 
structure as vector space over the field F and G is abelian. Clearly C = A ⊕Aop has an 
induced G-grading, given by Cg = Ag ⊕Aop

g and in this case the exchange involution

(a, b)exc = (b, a), for all (a, b) ∈ C

is a graded involution on A ⊕Aop.
When A is a matrix algebra with an elementary grading α we can realize (A ⊕

Aop, α, exc) in two more convenient ways. More precisely:

Definition 4. If α : [1, n] → G is any map, we present the map α as a G-word (or n-tuple) 
of lenght n, that is α := (α1, . . . , αn), then we define α−1 := (α−1

n , . . . , α−1
1 ) and we 

consider the concatenation ᾱ = (α | α−1) of the words α and α−1, that is

ᾱ = (α1, . . . , αn, α
−1
n , . . . , α−1

1 ).

We say that ᾱ is the ∗-closure of α.

Clearly ᾱiᾱ2n+1−i = 1G for all i ∈ [1, 2n] and so θ2n is a graded involution on (M2n, ᾱ). 
Now let (Mn⊕Mn, ᾱ, θ2n) denote the (G, ∗)-subalgebra of n ×n block diagonal matrices 
of (M2n, ᾱ, θ2n) and let us consider the linear map ψn : Mn ⊕Mop

n −→ M2n defined by:

ψn(a, b) =
(
a 0
0 0

)
+
(

b 0
0 0

)θ2n

=
(
a 0
0 bθn

)
,

for all (a, b) ∈ Mn ⊕Mop
n . We obtain the following:
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Lemma 1. The map ψn induces an isomorphism as (G, ∗)-algebras from

(Mn ⊕Mop
n , α, exc) to (Mn ⊕Mn, ᾱ, θ2n).

On the other hand we can consider the graded algebra (Mn, α) ⊕(Mn, α−1) and define 
a G-graded involution ϑ̃n on it by

(a, b)ϑ̃n = (bθn , aθn).

We denote this (G, ∗)-algebra by (Mn ⊕Mn, ᾱ, ϑ̃n). Clearly, considering the map

(a, b) �→ (a, bθn)

we obtain

Lemma 2. The (G, ∗)-algebras (Mn⊕Mop
n , α, exc) and (Mn⊕Mn, ᾱ, ϑ̃n) are isomorphic.

We conclude with

Proposition 8. Let A = (Mn ⊕Mop
n , α, exc) and B = (Mn ⊕Mop

n , β, exc), then A and B
are isomorphic as (G, ∗)-algebras if and only if, for all h ∈ [1, n], the polynomial Φ̃α,h is 
not a graded polynomial identity of B. In this case, either β ∼ α or β ∼ α−1.

Proof. We realize A and B as (Mn ⊕ Mn, ᾱ, ϑ̃n) and (Mn ⊕ Mn, β̄, ϑ̃n) respectively. 
Clearly, by Proposition 2, there exists an evaluation μh of Φ̃α,h such that μh(Φ̃α,h) =
(ehh, 0) ∈ A. Hence the same results holds for B ∼= A. Conversely, if Φ̃α,h is not a graded 
polynomial identity of B then either Φ̃α,h /∈ IdG((Mn, β)) or Φ̃α,h does not belong to 
IdG((Mn, β−1)) and so either β ∼ α or β ∼ α−1.

In the first case, by Proposition 1, the map �̃, defined by �̃(eij) = e�(i)�(j), is a 
graded isomorphism from (Mn, α) to (Mn, β) for some � ∈ Sn. Clearly the permutation 
�′ = γn�γn induces a graded isomorphism �̃′ from (Mn, α−1) to (Mn, β−1) and so the 
map

(a, b) �→ (�̃(a), �̃′(b))

is the required isomorphism as (G, ∗)-algebras.
In the second case, the graded isomorphism �̃ goes from (Mn, α−1) to (Mn, β) and so 

the map

(a, b) �→ (�̃(b), �̃′(a))

is the required isomorphism as (G, ∗)-algebras. �
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We remark that the corresponding (G, ∗)-isomorphisms from (Mn⊕Mn, ᾱ, θ2n) to the 
algebra (Mn ⊕Mn, β̄, θ2n) are given by conjugating with the 2n × 2n-matrices

(
C 0
0 C ′

)
and

(
0 C

C ′ 0

)
(5)

respectively in the first and in the second case. Here C is the permutation-matrix related 
to � and C ′ is the matrix related to �γn = γn�γn, that is C ′ = JnCJn = (Ct)θn =
(C−1)θn .

4. A classification of finite dimensional simple (Cp, ∗)-algebras

In this section we present a classification of finite dimensional (Cp, ∗)-simple algebras 
over an algebraically closed field of characteristic zero, where p is an odd prime and 
Cp =< ε > is the cyclic group of order p. We start recalling that, when G is a finite 
abelian group and Ĝ denotes its dual group, there exists a well understood duality 
between G-gradings and Ĝ-actions. Moreover if ∗ is an involution on a G-graded algebra 
A then ∗ is a graded involution if and only if ∗ commutes with the Ĝ-action on A.

In this situation, the proof of next theorem can be easily derived from the literature 
(e.g., see [21]). It is a generalization of the classical Wedderburn and Wedderburn-Malcev 
Theorems.

Theorem 1. Let G be a finite abelian group, A be a finite dimensional (G, ∗)-algebra over 
an algebraically closed field of characteristic zero and J = J(A) the Jacobson radical 
of A. Then:

(a) J is a (G, ∗)-ideal;
(b) If A is a (G, ∗)-simple algebra, then either A is G-simple or A = B⊕B∗ where B is 

a G-simple subalgebra of A;
(c) If A is semisimple, then A is a finite direct sum of (G, ∗)-simple algebras;
(d) A = A1 ⊕ · · · ⊕Am + J , where each algebra Ai, for all i ∈ [1, m], is a (G, ∗)-simple 

algebra.

The classification of finite dimensional simple Cp-algebras is a particular case of a 
deep result due to Bahturin, Seghal and Zaicev [6] concerning the structure of finite 
dimensional graded algebras.

Let us consider the group algebra F [Cp], we can realize this algebra as a graded 
subalgebra of Mp with respect the elementary grading induced by ε̃ = (1G, ε, . . . , εp−1). 
More precisely, given the cyclic permutation η := (12 . . . p) of the symmetric group Sp, 
let us denote by D the graded subalgebra of Mp generated, as a vector space, by the 
elements
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cεh−1 :=
p−1∑
i=0

eηi(1)ηi(h) for all h ∈ [1, p], (6)

so that the elements of D are:

a1c1G
+ a2cε + · · · + apcεp−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 · · · ap−1 ap

ap a1
. . . ap−1

...
. . . . . . . . .

...

a3
. . . . . . a2

a2 a3 · · · ap a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mp

where a1, . . . , ap ∈ F . Clearly D ∼= F [Cp] as graded algebras, moreover Mn(D) has a 
natural Cp-grading, induced by the natural grading on D and the trivial one on Mn, 
denoted by 1̃G = (1G, . . . , 1G︸ ︷︷ ︸

n

). As above Mn(D) ∼= D ⊗ Mn is a graded subalgebra of 

Mpn
∼= Mp ⊗Mn with respect the elementary grading induced by

ε̃⊗ 1̃G = (1G, ε, . . . , εp−1︸ ︷︷ ︸, . . . , 1G, ε, . . . , εp−1︸ ︷︷ ︸︸ ︷︷ ︸
n times

).

Hence we denote by ε̃n both this elementary grading on Mpn and the natural one 
in Mn(D). We remark that the invariance subgroup Hε̃n is the whole group Cp and 
wε̃n(g) = n for all g ∈ Cp.

Now, as in [12, Proposition 3.1.], we have:

Proposition 9. Let F be an algebraically closed field of characteristic zero and Cp = 〈ε〉
a group of prime order p. If A is a finite dimensional Cp-simple algebra, then it is 
isomorphic to one of the following Cp-graded algebras:

(a) (Mn, α), for some elementary grading α;
(b) (Mn(D), ̃εn).

We now deal with the classification of graded involutions on (Mn(D), ̃εn). Notice that 
the F -linear maps on Mn(D) defined by, for all d ∈ D,

(deij)θ̄n = deθnij

or, when n is an even integer

(deij)σ̄n = deσn
ij ,

are graded involutions on (Mn(D), ̃εn). More precisely they are induced on Mn(D) by 
the graded involutions θpn or σpn defined in the whole matrix algebra (Mpn, ̃εn). It is 
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not surprising to find that, up to isomorphisms, these are the only graded involutions 
defined on it. More precisely, we have:

Proposition 10. If F is an algebraically closed field of characteristic zero then, for any 
graded involution on (Mn(D), ̃εn), either

(Mn(D), ε̃n, ∗) ∼= (Mn(D), ε̃n, θ̄n)

or

(Mn(D), ε̃n, ∗) ∼= (Mn(D), ε̃n, σ̄n)

and n is even.

Proof. Since D is abelian, the center of Mn(D) is A = {dIn | d ∈ D} and so A is a 
(Cp, ∗) subalgebra of Mn(D). On the other hand B = Mn(Fc1G

) is the homogeneous 
component of degree 1G of (Mn(D), ̃εn), and so ∗ induces an involution on it. Clearly

(Mn(D), ε̃n, ∗) ∼= (A⊗B, ε̃⊗ 1̃G, ∗A ⊗ ∗B)

where ∗A and ∗B denote the involutions induced by ∗ on A and B respectively. Moreover 
(A, ̃ε, ∗A) ∼= (D, ̃ε, �) and (B, ̃1G, ∗B) ∼= (Mn, ̃1G, �) where � and � are the involutions 
corresponding to ∗A and ∗B in the natural isomorphisms of G-graded algebras between 
A and D, B and Mn respectively. Since ∗ preserves the grading and the homogeneous 
components of D are 1-dimensional then for each homogeneous element d of D there 
exists t ∈ F such that d	 = td. Clearly, t = ±1 since � is an involution. Moreover 
c	1G

= 1	D = c1G
and so (dp)	 = dp, for each homogeneous element d of D, because 

dp ∈ Fc1G
. It follows that tp = 1 and so t = 1. Therefore � is the identity on D and ∗

is the identity on A. On the other hand, by Proposition 4, either (Mn, �) ∼= (Mn, θn) or 
(Mn, �) ∼= (Mn, σn) and n is even. The result follows by previous Remarks 2, 3. �

Now we are able to classify the finite dimensional (Cp, ∗)-simple algebras.

Theorem 2. Let A be a finite dimensional (Cp, ∗)-simple algebra over an algebraically 
closed field of characteristic zero. Then A is isomorphic to one of the following simple 
(Cp, ∗)-algebras:

(a) (Mn, α, θn) or (Mn, α, σn) where the elementary grading is defined by α : [1, n] → Cp

satisfying the condition αiαn+1−i = αjαn+1−j for all i, j ∈ [1, n];
(b) (Mn(D), ̃εn, θ̄n) or (Mn(D), ̃εn, ̄σn);
(c) (Mn ⊕Mop

n , α, exc), with grading induced by the elementary grading defined on Mn

by the map α : [1, n] → Cp and exchange involution;
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(d) (Mn(D) ⊕Mn(D)op, ̃εn, exc), with grading induced by the natural one on Mn(D) and 
exchange involution.

Proof. Let A be a finite dimensional (Cp, ∗)-simple algebra. By Theorem 1, it follows 
that either A is Cp-simple or A = B ⊕B∗, for some Cp-simple subalgebra B of A.

Let assume that A is a Cp-simple algebra. If A is simple then by item (a) of Proposi-
tion 9 and by Proposition 5 we have (a). If A is Cp-simple but not simple, then by item 
(b) of Proposition 9 and by Proposition 10 we obtain (b).

Now, let A = B ⊕ B∗, where B is a Cp-simple subalgebra of A. Let consider C =
B ⊕ Bop, with the natural Cp-grading induced by the one existing on B and exchange 
involution (a, b)exc = (b, a). Clearly A and C are isomorphic as (Cp, ∗)-algebras, because 
(a + b∗)∗ = b + a∗ in A = B⊕B∗. Then, by Proposition 9, we obtain the statements (c), 
(d) and the proof is complete. �

We remark that all the algebras in the statement of Theorem 2 can be defined even 
in the case in which the field F is not algebraically closed, in this case we say that A is 
a classical finite dimensional (Cp, ∗)-simple algebra over the field F .

Now as a consequence of Proposition 6 we have:

Corollary 1. Let A and B be classical finite dimensional (Cp, ∗)-simple algebras, if 
dimF Aμ

g = dimF Bμ
g for all g ∈ Cp and μ ∈ {+, −}, then one of the following cases 

occurs

(a) A ∼= B as (Cp, ∗)-algebras;
(b) there exist some maps α, β : [1, n] → Cp such that A = (Mn ⊕ Mop

n , α, exc) and 
B = (Mn ⊕ Mop

n , β, exc) with exchange involutions and gradings induced by the 
elementary ones defined on Mn by α and β respectively.

We conclude this section by noting that the canonical basis En := {eij | i, j ∈ [1, n]} of 
Mn is always homogeneous since the grading is elementary, and moreover it is strongly 
multiplicative, that is if b1, b2 are basis elements and b1b2 �= 0 then b1b2 is a basis element 
too. The same properties hold for the basis

Dn := {cεh−1eij | h ∈ [1, p], i, j ∈ [1, n]}

of Mn(D) and for those of algebras Mn⊕Mop
n and Mn(D) ⊕Mn(D)op, given respectively 

by Ẽn := {(b, 0) | b ∈ En} ∪{(0, b) | b ∈ En} and D̃n := {(b, 0) | b ∈ Dn} ∪{(0, b) | b ∈ Dn}.
If B is any of these canonical bases and b ∈ B then there exists c ∈ {1, −1} such that 

cb∗ belongs to B. So we write b∗ ∈ ±B and we say that B is almost ∗-invariant.
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5. The (Cp, ∗)-algebra UT ∗
Cp

(A1, . . . , Am)

In this section we will define the algebra UT ∗
Cp

(A1, . . . , Am) of upper block triangular 
matrices associated with a sequence (A1, . . . , Am) of classical finite dimensional (Cp, ∗)-
simple algebras. To this end, some preliminary considerations are in order.

More precisely, if A is one of these algebras then, for some positive integer n, we 
assume that either A = S or A = S ⊕ Sop where S ∈ {Mn, Mn(D)} and Mn(D) is the 
graded subalgebra of Mnp defined in the previous section.

In this situation we say that S is the constituent of A and n is the size of A. Moreover, 
if S = Mn we say that A has extended size n, and if S = Mn(D) we say that A has 
extended size pn. We denote by sA the extended size of A.

We remark that in the previous definition S is always a graded subalgebra of MsA

with respect to the corresponding elementary grading αS : [1, sA] → Cp.
We have:

Proposition 11. If A is a classical finite dimensional (Cp, ∗)-simple algebra, with con-
stituent S, extended size s = sA and corresponding grading α = αS then A is isomorphic 
to a (Cp, ∗)-subalgebra of (Ms ⊕Ms, ᾱ, θ2s) via the map ϕA defined by:

(a, b) �→
(
a 0
0 0

)
+
(

b 0
0 0

)θ2s

=
(
a 0
0 bθs

)
if A = S ⊕ Sop

and

a �→
(
a 0
0 0

)
+
(
a∗ 0
0 0

)θ2s

=
(
a 0
0 a∗θs

)
if A = S.

Proof. If A = (Ms⊕Mop
s , α, exc) then the map ϕA is precisely the map ψs considered in 

Lemma 1. If A = (Mn(D) ⊕Mn(D)op, ̃εn, exc) then the map ϕA is the restriction of ψpn. 
Finally, we remark that we can consider any (G, ∗)-algebra A as a (G, ∗)-subalgebra of 
(A ⊕Aop, exc) with the induced grading, via the (G, ∗)-embedding given by a �→ (a, a∗)
for all a ∈ A. So, by the first part of this proof, we are done. �

If we look at M2s as the tensor product Ms ⊗ M2, then we can write the matrix (
a 0
0 b

)
as a ⊗ e11 + b ⊗ e22 or, using the involution θ2, as a ⊗ e11 + b ⊗ eθ211, for all 

a, b ∈ Ms.
Generalizing this construction to a direct sum we obtain the following:

Proposition 12. Let A1, . . . , Am be classical finite dimensional (Cp, ∗)-simple algebras 
with graded involutions ∗i, constituents Si ⊆ Msi of extended size si, grading words αi

on Msi , and embeddings ϕi : Ai → Ri = Msi ⊕Msi respectively.
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Let s := s1 + . . . + sm and α := (α1| . . . |αm) be the concatenation of the words 
α1, . . . , αm; consider M2s endowed with the grading induced by ᾱ, the ∗-closure of α, 
and involution θ2s. Finally, define ζ : R1 ⊕ · · · ⊕Rm → M2s by

ζ

((
a1 0
0 b1

)
, . . . ,

(
am 0
0 bm

))
:=

m∑
i=1

ai ⊗ eii +
m∑
i=1

bi ⊗ eθ2mii

Then the map ϕ, defined by

ϕ(u1, . . . , um) := ζ(ϕ1(u1), . . . , ϕm(um))

is a ∗-embedding of A1 ⊕ · · · ⊕Am in (M2s, ᾱ, θ2s).

Now, with the same notation of the previous proposition we have:

Definition 5. Let A1, . . . , Am be classical finite dimensional (Cp, ∗)-simple algebras, and 
ϕ the ∗-embedding of A1 ⊕ · · · ⊕Am in (M2s, ᾱ, θ2s). For i, j ∈ [1, m], let Vij := Msi×sj

and in M2s denote:

Uij := Vij ⊗ eij , Uij := Uθ2s
ij = Vji ⊗ eθ2mij and V =

⊕
i,j∈[1,m]

i<j

(
Uij ⊕ Uij

)
,

then we define

A := UT ∗
Cp

(A1, . . . , Am) = ϕ(A1 ⊕ · · · ⊕Am) ⊕ V.

A direct verification shows that UT ∗
Cp

(A1, . . . , Am) is actually a (Cp, ∗)-subalgebra of 
M2s enveloping A1 ⊕ · · · ⊕Am and whose Jacobson radical coincides with V .

We observe that the definition of the (Cp, ∗)-structure on UT ∗
Cp

(A1, . . . , Am) depends 
heavily on the maps α1, . . . , αm that define the gradings on each of our classical algebras 
A1, . . . , Am. In this paper, when appropriate, we will emphasize the role of these maps. 
An important case is the following

Definition 6. Given the sequence A1, . . . , Am of classical finite dimensional (Cp, ∗)-simple 
algebras, with grading words α1, . . . , αm for any m-tuple g = (g1, . . . , gm) ∈ Cm

p , 
we consider the Cp-words g1α

1, . . . , gmαm of lenght s1, . . . , sm respectively, defined by 
(ghαh)t = ghα

h
t for all t ∈ [1, sh] and for all h ∈ [1, m]. We define the words

αg := (g1α
1| . . . |gmαm) and its ∗-closure ᾱg

and the corresponding subalgebra of (M2s, ᾱg, θ2s), that we denote by

Ag := UT ∗
C ,g(A1, . . . , Am)
p
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distinguishing it from the algebra A = UT ∗
Cp

(A1, . . . , Am) determined using the previous 
grading words α1, . . . , αm.

Once again, the h-th simple component of the maximal semisimple (Cp, ∗)-subalgebra 
of UT ∗

Cp,g(A1, . . . , Am) is isomorphic to Ah. Moreover, if g = (g, . . . , g) for some g ∈ Cp

then

UT ∗
Cp,g(A1, . . . , Am) = UT ∗

Cp
(A1, . . . , Am).

Now we establish some conditions on the presentations of A1, . . . , Am which yield 
isomorphic (Cp, ∗)-algebras.

Proposition 13. Given the sequence A1, . . . , Am of classical finite dimensional (Cp, ∗)-
simple algebras, with grading words α1, . . . , αm, for any k ∈ [1, m] we have

UT ∗
Cp

(A1, . . . , Ak, . . . , Am) ∼= UT ∗
Cp

(A1, . . . , Bk, . . . , Am)

where:

(a) If Ak = (Mn, αk, ∗k) we can permute appropriately the elements of the word αk; 
that is, we consider Bk = (Mn, βk, ∗k) and βk = αk�−1 for some � ∈ Sn such that 
�γn = γn�.

(b) If Ak = (Mn ⊕ Mop
n , αk, exc) we can permute without any restriction the elements 

of the word αk; that is, we consider Bk = (Mn ⊕Mop
n , βk, exc) and βk = αk�−1 for 

any � ∈ Sn.
(c) If Ak = (Mn⊕Mop

n , αk, exc) we can multiply the elements of the word αk by any ele-
ment of the invariance subgroup Hαk ; that is, we consider Bk = (Mn⊕Mop

n , βk, exc)
and βk = gαk = (gαk

1 , . . . , gα
k
n) for any g ∈ Hαk .

(d) If Ak = (Mn(D), ̃εn, ̄∗k) or Ak = (Mn(D) ⊕ Mn(D)op, ̃εn, exc) we can multiply 
the elements of the word ε̃n by any element of Cp; that is, we consider respectively 
Bk = (Mn(D), gε̃n, ̄∗k) or Bk = (Mn(D) ⊕Mn(D)op, gε̃n, exc) and

gε̃n = (g, gε, . . . , gεp−1, . . . , g, gε, . . . , gεp−1).

Proof. For each case we describe the isomorphisms maps acting on the whole algebra 
(M2s, ᾱ, θ2s) which induce the required isomorphisms between UT ∗

Cp
(A1, . . . , Ak, . . . Am)

and UT ∗
Cp

(A1, . . . , Bk, . . . , Am). The isomorphisms are determined by conjugating with 
the matrix

I2s + (P − Isk) ⊗ ekk + ((P−1)θsk − Isk) ⊗ eθ2mkk ,

where for each case we consider the corresponding matrix P as follows:
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(a) In this case clearly sk = n, moreover we have:

if ∗k = θn then P =
n∑

i=1
e�(i)i, while if ∗k = σn then P =

n∑
i=1

ε(i)e�(i)i

that is P is one of the matrices C and E considered in (4).
(b) In this case

P =
n∑

i=1
e�(i)i

is the matrix C considered in (5).
(c) In this case, since g ∈ Hα, there exists � ∈ Sn such that βk = αk�−1 and, as in the 

previous case, we choose

P =
n∑

i=1
e�(i)i

(d) In this case, sk = pn and there exists some power � of the permutation η = (12 . . . p)
such that gε̃ = (g, gε, . . . , gεp−1) = ε̃�−1. Therefore we can consider the matrix

P =
p∑

i=1
e�(i)i ⊗ In ∈ Mp ⊗Mn. �

In the light of this result, it is appropriate to present the natural grading on the 
algebra Mn(D) as induced by the map gε̃n, where g is any element of Cp. Once again 
Hε̃n = Hgε̃n = Cp and any element of Cp has maximal weight. In the following, in analogy 
to the case of Mn, we will denote by α the map considered to define the given grading 
on Mn(D). Clearly the same considerations apply for the algebra Mn(D) ⊕ Mn(D)op. 
Moreover, it makes sense to give in this paper the following

Definition 7. Let A be a classical finite dimensional (Cp, ∗)-simple algebra with grading 
word α, we say that

· A is (Cp, ∗)-regular if, for some n ≥ 1, A is one of the following algebras:

Mn(D), Mn(D) ⊕Mn(D)op or Mn ⊕Mop
n with Hα = Cp,

· A is (Cp, ∗)-singular if, for some n ≥ 1, either

A = Mn or A = Mn ⊕Mop
n with Hα = {1Cp}.
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The last but not least instance of basic moves leading to isomorphic algebras is the 
following:

Lemma 3. Given the sequence A1, . . . , Am of classical finite dimensional (Cp, ∗)-simple 
algebras, with grading words α1, . . . , αm, let Bk = Am+1−k with grading word βk =
(αm+1−k)−1 for all k ∈ [1, m], then

UT ∗
Cp

(A1, . . . , Am) ∼= UT ∗
Cp

(B1, . . . , Bm).

Proof. The result follows considering the (Cp, ∗)-isomorphism τ̃ between (Ms ⊕
Ms, α, θ2s) and (Ms ⊕Ms, α−1, θ2s), induced by the permutation τ ∈ S2s:

τ(i) =
{
i + s if i ∈ [1, s]
i− s if i ∈ [s + 1, 2s]. �

Once again, let us make explicit a canonical basis of A := UT ∗
Cp

(A1, . . . , Am). Clearly, 
a basis of J(A) is given by the following set

BJ :=
⋃

i,j∈[1,m],i<j

({euv⊗eij |u ∈ [1, si], v ∈ [1, sj ]}∪{evu⊗eθ2mij | v ∈ [1, sj ], u ∈ [1, si]}).

To obtain a canonical basis of A we consider, for each k ∈ [1, m], the canonical basis Bk

of the classical finite dimensional (Cp, ∗)-simple algebra Ak, we denote by Bk its image 
ϕ(Bk) in A, and we add the elements of BJ . At the end, we get:

Definition 8. Let BA := (
⋃

k∈[1,m] Bk) ∪BJ . This homogeneous basis of A is called the
canonical basis of A.

As in the previous section it is easy to show that B = BA is strongly multiplicative 
and almost ∗-invariant, that is:

− b1b2 ∈ B for all b1, b2 ∈ B such that b1b2 �= 0;
− b∗ ∈ ±B for all b ∈ B.

Actually, any non-zero product of elements of B is well behaved with respect to the 
action of permutations and the involution. More precisely, let A be a (Cp, ∗)-algebra, 
a1, . . . , ar ∈ A and a = a1 · · · ar. If σ ∈ Sr and λ : [1, r] → {1, ∗} is any map we denote

aλσ := a
λ(1)
σ(1) . . . a

λ(r)
σ(r).

We are interested to compute the product bλσ when the elements b1, . . . , br belong to the 
canonical basis B of A.
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We start by considering first only elements belonging to a unique classical finite di-
mensional (Cp, ∗)-simple algebra. In this case let us say that (a, b) is a diagonal element 
of Mn ⊕Mop

n , or Mn(D) ⊕Mop
n (D), if and only if a and b are diagonal matrices in Mn

or Mn(D) respectively. Now, with this terminology we have:

Lemma 4. Let A be a classical finite dimensional (Cp, ∗)-simple algebra, B its canonical 
basis, b1, . . . , br ∈ B, b := b1 · · · br, σ ∈ Sr and λ : [1, r] → {1, ∗}. If b, bλσ �= 0 then

− b is in B and bλσ belongs to ±B;
− if b is a diagonal element, then bλσ is diagonal, too;
− if b is not a diagonal element, then bλσ ∈ {±b, ±b∗}.

Proof. If A = (Mn, ̃g, ∗), where ∗ = θn, σn or A = (Mn(D), ̃εn, ∗), with ∗ = θ̄n, ̄σn then 
the statement follows from Lemma 1 of [14].

If A = (Mn ⊕Mop
n , α, exc) or A = (Mn(D) ⊕Mn(D)op, ̃εn, exc), b �= 0A implies that 

b1, . . . , br belong to the same component of A. Moreover, since bλσ �= 0A, we have that λ
is a constant map, that is either λ(i) = 1 or λ(i) = ∗ for all i ∈ [1, r]. In the former case, 
bλσ = bσ and the statement follows from the previous result about products of matrix 
units [27, Lemma 1]; in the latter case, instead, bλσ = b∗σ(1) . . . b

∗
σ(r) = (bσ(r) . . . bσ(1))∗

and again the statement follows. �
Similarly, in the general case we have:

Lemma 5. Let B be the canonical basis of A, consider b1, . . . , br ∈ B and let b = b1 · · · br. 
If b �= 0A then either b ∈ Bk for some k ∈ [1, m] or b ∈ BJ . Moreover, for any σ ∈ Sr

and λ : [1, r] → {1, ∗} such that bλσ �= 0, we have:

− If b ∈ Bk, then bi ∈ Bk for all i ∈ [1, r], and bλσ ∈ ±Bk;
− If b ∈ BJ then bλσ ∈ {±b, ±b∗}.

6. (Cp, ∗)-varieties and algebras UT ∗
Cp

(A1, . . . , Am)

Our goal in this section is to prove that any minimal variety (see Definition 1) 
of (Cp, ∗)-algebras is generated by some of the finite dimensional (Cp, ∗)-algebras 
UT ∗

Cp
(A1, . . . , Am) introduced in the previous section. For this purpose let us consider 

the following

Definition 9. Let A be a finite dimensional (Cp, ∗)-algebra over an algebraically closed 
field F . We say that A is triangular if either it is (Cp, ∗)-simple or A = A1 ⊕ · · · ⊕Am +
J(A), with A1, . . . , Am (Cp, ∗)-simple algebras, m ≥ 2, and there exist homogeneous 
elements w1,2, . . . , wm−1,m ∈ J(A) and minimal homogeneous idempotents ei ∈ Ai, for 
each i ∈ [1, m], such that



F.S. Benanti et al. / Linear Algebra and its Applications 699 (2024) 459–507 487
(a) w1,2 · · ·wm−1,m �= 0A;
(b) eiwi,i+1 = wi,i+1 = wi,i+1ei+1 for all i ∈ [1, m − 1].
(c) J(A) = I(A) ⊕ I(A)∗ where I(A) is the ordinary two-sided ideal generated by 

w1,2, . . . , wm−1,m.

In this situation the elements wi,i+1’s are called the homogeneous connectors of the 
simple components of A and J(A) is generated as an ordinary two-sided ideal by the 
elements w1,2, w∗

1,2, . . . , wm−1,m, w∗
m−1,m.

We observe that the order of the classical finite dimensional (Cp, ∗)-simple algebras 
A1, . . . , Am in the semisimple part of a triangular (Cp, ∗)-algebra, Ā, is important. For 
this reason, in the rest of this paper, when we write Ā = A1 ⊕ · · · ⊕Am then we assume 
that A1J · · ·JAm �= 0A.

If A is a triangular (Cp, ∗)-algebra, then remembering the connection between the 
notions of admissible (Cp, ∗)-algebra and (Cp, ∗)-exponent we get exp∗

Cp
(A) = dimF Ā.

Moreover using exactly the same arguments of the proof of Lemma 4.2 in [13], which 
deals with the case p = 2, we obtain the following:

Proposition 14. Let V = var∗Cp
(A) be the variety generated by a finite dimensional 

(Cp, ∗)-algebra A over an algebraically closed field F , then there exists a triangular 
(Cp, ∗)-algebra B in V such that exp∗

Cp
(A) = exp∗

Cp
(B). In particular, if V is minimal, 

then one has V = var∗Cp
(B).

The next theorem highlights the close link between triangular (Cp, ∗)-algebras and 
algebras of type Ag.

Theorem 3. Let A be a triangular (Cp, ∗)-algebra with semisimple part Ā = A1⊕· · ·⊕Am. 
Then there exists g̃ ∈ Cm

p such that Ag̃ = UT ∗
Cp,g̃(A1, . . . , Am) belongs to var∗Cp

(A). In 
particular, if var∗Cp

(A) is minimal, then var∗Cp
(A) = var∗Cp

(Ag̃).

Proof. First of all, as it is allowed to do, we assume that, for all k ∈ [1, m], the idempo-
tent ek of the k-th (G, ∗)-simple component Ak of the triangular algebra A corresponds 
to the matrix unit ejkjk of Mnk

in the case in which Ak is isomorphic to (Mnk
, αk, ∗k)

and to the elements c1G
ejkjk , (ejkjk , 0), (c1G

ejkjk , 0) in the case in which Ak is isomor-
phic respectively to Mnk

(D), Mnk
⊕Mop

nk
, Mnk

(D) ⊕Mnk
(D)op with the corresponding 

gradings and involutions.
We remark that c1G

ejkjk =
∑p

l=1 ep(jk−1)+l p(jk−1)+l when we realize Mn(D) as subalge-
bra of Mpn. Hence, for all k ∈ [1, m], we put

ik =
{

jk if Ak
∼= Mnk

or Ak
∼= Mnk

⊕Mop
nk

p(jk − 1) + 1 if Ak
∼= Mnk

(D) or Ak
∼= Mnk

(D) ⊕Mnk
(D)op.

Now we define g̃ = (g1, . . . , gm) where
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g1 = 1G and gk := αk(ik)−1α1(i1)|w1,2 · · ·wk−1,k|A, for all k ∈ [2,m]

if 1 < m and w1,2, . . . , wm−1,m are the homogeneous connectors of the simple components 
of A. Our goal is to prove that Ag̃ ∈ var∗Cp

(A). To this end, we work by induction on 
the number m of the (Cp, ∗)-simple components of A.

If m = 1, then Ag̃ = UT ∗
Cp,g̃(A1) ∼= A1 = A and the statement is clearly true. 

Hence, we assume that m ≥ 2 and remark that |wk,k+1|A = |eikik+1 ⊗ ek k+1|Ag̃
for all 

k ∈ [1, m − 1]. Now let

f = f(x1, . . . , xn, x
∗
1, . . . , x

∗
n) ∈ F 〈XG, ∗〉 − Id∗Cp

(Ag̃).

We want to show that f is not a (Cp, ∗)-polynomial identity for A. Since F is a field 
of characteristic zero, we can assume that f is multilinear. Hence, there exist elements 
b1, . . . , bn of the canonical basis B of Ag̃ such that |bi|Ag̃

= |xi|F 〈XG,∗〉 for each i ∈ [1, n]
and f(b1, . . . , bn, b∗1, . . . , b∗n) �= 0Ag̃

. Since J(Ag̃) is nilpotent of index m, if t is the number 
of the bk’s which are in J(Ag̃) then t ≤ m − 1. Let b1, . . . , bt be such elements, hence 
b1 = eu1v1 ⊗ eh1k1 , . . . , bt = eutvt ⊗ ehtkt

with hl < kl for all l ≤ t and br = eurvr ⊗ ekrkr

for all r > t. Assume first that t < m − 1. Then there exists an index h̄ ∈ [1, m − 1] such 
that none among of the elements b1, . . . , bn is in 

⊕
j>h̄(Uh̄,j ⊕ Uh̄,j). Now, we have to 

distinguish two cases:
• if there exists l ∈ [1, n] such that bl ∈ Ur,h̄ ⊕Ur,h̄, for some r � h̄, then all elements 

bk’s are in the subalgebra

⊕
i∈[1,h̄]

ϕ(Ai) ⊕
⊕

1≤i<j≤h̄

(Uij ⊕ Uij),

which is a (Cp, ∗)-algebra isomorphic to A′
g′ := UT ∗

Cp,g′(A1, . . . , Ah̄), where g′ =
(g1, . . . , gh̄), corresponding to the triangular (Cp, ∗)-subalgebra A′ of A with (Cp, ∗)-
simple components A1, . . . , Ah̄ and connectors w1,2, . . . , wh̄−1,h̄;

• the basis elements b1, . . . , bn are in

⊕
i∈[1,m],i 
=h̄

ϕ(Ai) ⊕
⊕

1≤i<j≤m
i
=h̄ 
=j

(
Uij ⊕ Uij

)
,

which is a (Cp, ∗)-algebra isomorphic to A′
g′ := UT ∗

Cp,g′(A1, . . . , Ah̄−1, Ah̄+1, . . . , Am), 
for g′ = (g1, . . . , gh̄−1, gh̄+1, . . . , gm), corresponding to the triangular (Cp, ∗)-subalgebra 
A′ of A with m − 1 simple components A1, . . . , Ah̄−1, Ah̄+1, . . . , Am and connector ele-
ments w1,2, . . . , wh̄−2,h̄−1, (wh̄−1,h̄wh̄,h̄+1), wh̄+1,h̄+2, . . . , wm−1,m.

In both cases f �∈ Id∗Cp
(A′

g′). By inductive hypothesis, we conclude that f does not 
belong to Id∗Cp

(A).
Now, we suppose that t = m − 1. Let us define e :=

∑s
i=1 eii ∈ M2s and e := eθ2s . 

Hence e is an homogeneous idempotent of degree 1G and 1M2s = e + e. Let π↑ : M2s →
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M2s be the Cp-graded homomorphism defined by π↑(a) := eae and denote π↓ the similar 
map induced by e. Then

f(b1, . . . , bn, b∗1, . . . , b∗n) = π↑(f(b1, . . . , bn, b∗1, . . . , b∗n))

+ π↓(f(b1, . . . , bn, b∗1, . . . , b∗n)) �= 0Ag̃

implies that at least one summand is not zero. We can suppose π↑(f(b1, . . . , bn,
b∗1, . . . , b

∗
n)) �= 0Ag̃

. Then we confine ourselves to analyze only the monomials of f whose 
image by π↑ is not zero. By appropriately replacing the variables of f , we can also assume 
that x1x2 · · ·xn is one of these monomials, that is b = b1b2 · · · bn �= 0Ag̃

. Hence, there ex-
ist t1, . . . , tm−1 ∈ [1, n] such that bt1 = eu1v2 ⊗e12, . . . , btm−1 = eum−1vm ⊗em−1m, where, 
if si is the extended size of Ai, ui ∈ [1, si] and vi+1 ∈ [1, si+1], for all i ∈ [1, m − 1]. 
Moreover each bi ∈ {b1, . . . , bn}\{bt1 , . . . , btm−1} is in the diagonal blocks of Ag̃.

Hence, by Lemma 5,

π↑(f(b1, . . . , bn, b∗1, . . . , b∗n)) = βeuv ⊗ e1m

for some 0 �= β ∈ F , u ∈ [1, s1] and v ∈ [1, sm]. Now, for every k ∈ [1, m] and pairs of 
indices i, j ∈ [1, sk], we denote by ek(i, j) the only element of the basis Bk having the 
matrix unit eij ⊗ ekk of Ukk as its component, so that the idempotents e1, e2, . . . , em of 
the triangular algebra A correspond respectively to e1(i1, i1), e2(i2, i2), . . . , em(im, im). 
We set b0 := e1(1, u), bn+1 := em(v, 1) and let us consider the polynomial f ′ := x0fxn+1
with new graded variables x0, xn+1 of degree |b0|Ag̃

and |bn+1|Ag̃
respectively. Then

b0π
↑(f(b1, . . . , bn, b∗1, . . . , b∗n))bn+1 = e1(1, u)(βeuv ⊗ e1m)em(v, 1) = β(e11 ⊗ e1m).

For all k ∈ [1, m − 1], let ck ∈ Ak and dk+1 ∈ Ak+1 be the elements corresponding to 
ek(uk, ik) and ek+1(ik+1, vk+1) in the isomorphisms between the simple components of 
A and the diagonal blocks of Ag̃ respectively, then set atk := ckwk,k+1dk+1 where wk,k+1
is a connector of A. From the equality

eukvk+1 ⊗ ekk+1 = ek(uk, ik)(eikik+1 ⊗ ekk+1)ek+1(ik+1, vk+1),

it follows

|atk |A = |ck|A|wk,k+1|A|dk+1|A = |ek(uk, ik)|Ag̃
|eikik+1⊗ek k+1|Ag̃

|ek+1(ik+1, vk+1)|Ag̃
=

|eukik ⊗ ekk|ᾱg
|eikik+1 ⊗ ek k+1|ᾱg

|eik+1vk+1 ⊗ ek+1k+1|ᾱg
= |eukvk+1 ⊗ ekk+1|Ag̃

= |btk |Ag̃
.

Setting t0 := 0 and tm := n +1, we can conclude as above that the elements bi belong 
to Uk,k

⊕
Ukk for every tk−1 +1 ≤ i ≤ tk − 1. Let ai ∈ Ak be the element corresponding 

to bi, d1 := a0 that corresponding to b0 in A1 and cm := an+1 that corresponding to 
bn+1 in Am. Finally, we consider the evaluation
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a0f(a1, . . . , an, a
∗
1, . . . , a

∗
n)an+1.

Clearly it is in J(A) and we will prove that it is non-zero.
Recall that J(A) = I(A) ⊕ I(A)∗, where I is the ordinary two-sided ideal generated 

by the connectors w1,2, . . . , wm−1,m, so that we can write a = π↑
A(a) + π↓

A(a) for all 
a ∈ J(A). Here π↑

A and π↓
A are the natural projections on I(A) and I(A)∗ respectively.

First, let π↑
A(a0a

λ1
σ(1) · · · a

λn

σ(n)an+1) be a non-zero element of I(A), then σ(tk) = tk and 
λtk = 1, for all k ∈ [1, m − 1]. Moreover, for every q ∈ [1, m], the inequality tq−1 < l < tq
implies that tq−1 < σ(l) < tq since aλl

σ(l) ∈ Aq. In this case we obtain:

a0a
λ1
σ(1) · · · a

λn

σ(n)an+1 = d1a
λ1
σ(1) · · · a

λn

σ(n)cm =

d1a
λ1
σ(1) · · · a

λt1−1
σ(t1−1)c1w1,2d2a

λt1+1
σ(t1+1) · · · a

λt2−1
σ(t2−1)c2w2,3 · · ·wm−1,mdma

λtm−1+1

σ(tm−1+1) · · · a
λn

σ(n)cm

�= 0A

that provides the following equivalent statement:

dka
λtk−1+1

σ(tk−1+1) · · · a
λtk−1

σ(tk−1)ck �= 0A, ∀k ∈ [1,m]

and so

ek(ik, vk)b
λtk−1+1

σ(tk−1+1) · · · b
λtk−1

σ(tk−1)ek(uk, ik) �= 0Ag̃
∀k ∈ [1,m],

where v1 = u and um = v. By Lemma 5, one has that, for all k ∈ [1, m], the 

element b
λtk−1+1

σ(tk−1+1) · · · b
λtk−1

σ(tk−1) is in ±Bk. Moreover, since |bλtk−1+1

σ(tk−1+1) · · · b
λtk−1

σ(tk−1)|Ag̃
=

|ek(vk, uk)|Ag̃
, the same Lemma 5 implies that, for each k ∈ [1, m], there exists 

c
(k)
σ,λ ∈ {−1F , 1F } such that

b
λtk−1+1

σ(tk−1+1) · · · b
λtk−1

σ(tk−1) = c
(k)
σ,λek(vk, uk).

Hence, for a such pair (σ, λ) we obtain:

e1(1, v1)bλ1
σ(1) · · · b

λt1−1
σ(t1−1)(eu1v2⊗e12) · · · (eum−1vm⊗em−1m)b

λtm−1+1

σ(tm−1+1) · · · b
λn

σ(n)em(um, 1) =

( m∏
k=1

c
(k)
σ,λ

)
(e1m ⊗ e11)

and so π↑(bλ1
σ(1) · · · b

λn

σ(n)) �= 0Ag̃
.

Conversely, if π↑(bλ1
σ(1) · · · b

λn

σ(n)) �= 0Ag̃
then, in accordance with what was stated 

above, one has that σ(tk) = tk and λk = 1 for all k ∈ [1, m − 1] and, for every q ∈ [1, m], 
the inequality tq−1 < l < tq implies that tq−1 < σ(l) < tq. Hence, for all k ∈ [1, m]
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b
λtk−1+1

σ(tk−1+1) · · · b
λtk−1

σ(tk−1) = c
(k)
σ,λek(vk, uk)

from which it follows that

ek(ik, vk)b
λtk−1+1

σ(tk−1+1) · · · b
λtk−1

σ(tk−1)ek(uk, ik) = c
(k)
σ,λek(ik, ik).

Since ek is the minimal homogeneous idempotent of Ak corresponding to ek(ik, ik), we 
have that

dka
λtk−1+1

σ(tk−1+1) · · · a
λtk−1

σ(tk−1)ck = c
(k)
σ,λek

for all k ∈ [1, m] and

d1aσ(1) · · · aσ(n)cm =
( m∏
k=1

c
(k)
σ,λ

)
e1w1,2e2w2,3 · · · em−1wm−1,mem =

( m∏
k=1

c
(k)
σ,λ

)
w1,2w2,3 · · ·wm−1,m �= 0A.

Then, we obtain

π↑
A(a0f(a1, . . . , an, a

∗
1, . . . , a

∗
n)an+1) = βw1,2w2,3 · · ·wm−1,m �= 0A.

Hence f is not a (Cp, ∗)-identity for A and we can conclude that Ag̃ belongs to var∗Cp
(A). 

Since exp∗
Cp

(A) = exp∗
Cp

(Ag̃), if var∗Cp
(A) is minimal, then var∗Cp

(A) = var∗Cp
(Ag̃) and 

the theorem is proved. �
Now we can present the main result of this section about (Cp, ∗)-varieties generated 

by finite dimensional algebras.

Theorem 4. Let V be a variety of (Cp, ∗)-algebras generated by a finite dimensional 
(Cp, ∗)-algebra with exp∗

Cp
(V) = d, then there exists a sequence A1, . . . , Am of classical 

finite dimensional (Cp, ∗)-simple algebras such that A = UT ∗
Cp

(A1, . . . , Am) belongs to V
and dimF (A1 ⊕ · · · ⊕Am) = d.

In particular, if V is minimal then V = var∗Cp
(UT ∗

Cp
(A1, . . . , Am)).

Proof. Let F̄ be the algebraic closure of F and consider the variety V̄ determined by the 
ideal of F̄ 〈XG, ∗〉 generated by Id∗G(V). V̄ is generated by some (Cp, ∗)-algebra of finite 
dimension over F̄ . Then, using Proposition 14 and Theorem 3, it follows that V̄ contains 
UT ∗

Cp
(Ā1, . . . , Ām), for suitable (Cp, ∗)-simple algebras Ā1, . . . , Ām with dimF̄ (Ā1⊕· · ·⊕

Ām) = d. In light of Theorem 2 and Definition 5, we can determine a sequence A1, . . . , Am

of classical finite dimensional (Cp, ∗)-simple algebras over F such that Āk
∼= Ak⊗F F̄ and 

so UT ∗
Cp

(Ā1, . . . , Ām) ∼= UT ∗
Cp

(A1, . . . , Am) ⊗F F̄ . It follows that UT ∗
Cp

(A1, . . . , Am) ∈ V
and clearly d = dimF (A1 ⊕ · · · ⊕Am), as desidered.



492 F.S. Benanti et al. / Linear Algebra and its Applications 699 (2024) 459–507
Finally, if V is minimal then we obtain V = var∗Cp
(UT ∗

Cp
(A1, . . . , Am)) since 

exp∗
Cp

(V) = d = exp∗
Cp

(UT ∗
Cp

(A1, . . . , Am)). �
7. Alternating polynomials for UT ∗

Cp
(A1, . . . , Am)

Throughout this section we will assume that (A1, . . . , Am) is an m-tuple of classical 
finite dimensional (Cp, ∗)-simple algebras and A = UT ∗

Cp
(A1, . . . , Am). Our purpose is 

to construct a family of (Cp, ∗)-polynomials alternating in suitable subsets of variables 
which are not (Cp, ∗)-identities for the algebra A.

For each classical finite dimensional (Cp, ∗)-simple algebra A first we will describe a 
basis L(A) contained in 

⋃
(g,μ) A

μ
g , where g ∈ Cp and μ ∈ {+, −}, which we call the 

standard basis of A. Next we will construct appropriate non-zero products of all the 
elements of that standard basis.

Case I. Let A = (Mn, α, ∗), where ∗ = θn, σn is the transpose or the symplectic type 
involution and α = (g1, . . . , gn) ∈ Cn

p satisfies the condition gigγ(i) = gjgγ(j) for all 
i, j ∈ [1, n]. In this case, the standard basis { pij | i, j ∈ [1, n]} of A introduced in the 
proof of Proposition 6 is the required one, L(A). Let us recall that, for all i, j ∈ [1, n],

pij =

⎧⎪⎨
⎪⎩

eij + e∗ij , if i < γ(j)
eij , if i = γ(j)
eij − e∗ij , if i > γ(j)

(7)

To construct the standard total product of the elements of this basis, we observe that 
one obtains the matrix unit e11 as a product

C1C2 · · · Cn = e11(e12e22e21) · · · (e1nen2e2n · · · enn−1en−1nennen1)

of the n2 matrix units of Mn. Let us fix such a product, which we denote by π1,Mn
. The 

first standard total product of A, π1,A, is obtained from π1,Mn
replacing the matrix units 

eij appearing there with pij .
If i = γ(j) then euvpij = euveij = δvieuj where δvi is the Kronecker delta. If i �= γ(j), 

then pij = eij + ceγ(j)γ(i) for some c = ±1F and so euvpij = δvieuj + cδvγ(j)euγ(i) and 
only one of the two addends can be nonzero. Since in the product π1,A exactly n factors 
are given by the matrices e1n, e2n−1, . . . , en1, in the expansion of π1,A we can have at 
most one non-zero addend. Clearly, by our positions, π1,Mn

appears in the expansion of 
π1,A and so π1,A = π1,Mn

. Hence

π1,A = π1,(Mn,α,∗) = e11.

Similarly, if n > 1 we can consider the product πn,Mn
given by πn,Mn

= en1C1 · · · Cn−1C′
n−1

where C′
n−1 = e1nen2e2n · · · enn−1en−1nenn and the corresponding total product πn,A

obtained from πn,Mn
replacing the matrix units eij appearing there with pij . As above 

we have:
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πn,A = πn,(Mn,α,∗) = enn.

Finally, if 1 < h < n, we consider the product πh,Mn
= ĈhC1 · · · Ch−1Ch+1 · · · Cne1h, where 

Ĉh = eh2e2h · · · ehh−1eh−1hehheh1, and the corresponding total product πh,A. Clearly, 
we obtain:

πh,A = πh,(Mn,α,∗) = ehh.

Case II. Let A = (Mn(D), α, ∗), where α = gε̃n, for some g ∈ Cp and ∗ = θ̄n, ̄σn is 
the graded involution defined on Mn(D) by

(deij)θ̄n = deθnij and (deij)σ̄n = deσn
ij .

In this case the standard basis of A is L(A) = {cεl−1pij | l ∈ [1, p], i, j ∈ [1, n]}, where 
the pij are the elements of Mn defined above (7), and the cεl−1 are the elements of the 
natural basis of D given in equation (6).

The h-th standard total product is obtained by multiplying first all the elements 
c1G

pij in the same order used in Case I for the elements pij, then all elements of degree 
ε and so on. The final result is

πh,A = πh,(Mn(D),α,∗) = (c1G
ehh)(cn

2

ε ehh) · · · (cn2

εp−1ehh) = c1G
ehh.

Case III. Let A = (Mn ⊕Mop
n , α, exc) and let us define for all i, j ∈ [1, n],

qij := (eij , eij) and q̄ij := (eij ,−eij). (8)

In this case the standard basis of A is L(A) = {qij , q̄ij | i, j ∈ [1, n]}.
To construct the h-th standard total product, as made in Case I, we start from the 

product πh,Mn
= ehh. Hence replace the matrix units eij appearing there with qij . After 

that, multiply this product with the product of all the elements of this basis involving 
the q̄ij ’s in the same order used for the qij ’s. With these positions one has that

πh,A = πh,(Mn⊕Mop
n ,α,exc) =

{
q̄11 = (e11,−e11) if n = 1,
(ehh, 0) otherwise.

Case IV. Let A = (Mn(D) ⊕ Mn(D)op, α, exc), where as above α = gε̃n for some 
g ∈ Cp. In this case the standard basis of A is L(A) = {cεl−1qij , cεl−1 q̄ij | h ∈ [1, p], i, j ∈
[1, n]}, where the qij ’s and the q̄ij ’s are the elements of Mn ⊕Mop

n , defined above (8).
The standard total product is obtained by multiplying first all the elements c1G

qij and 
c1G

q̄ij in the same order used in Case III for the elements qij and q̄ij , then all elements 
of degree ε and so on. The final outcome is:
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πh,A = πh,(Mn(D)⊕Mn(D)op,α,exc) =
{
c1G

q̄11 = (c1G
e11,−c1G

e11) if n = 1,
(c1G

ehh, 0) otherwise.

Now, as in the case of ordinary G-graded algebras [3], we insert in the standard total 
product πh,A suitable homogeneous minimal idempotents of A that border each of the 
elements of L(A). More precisely, we denote by π̃h,A this new product:

Case I for each element pij of L(A) we insert the idempotent eii on the left and we 
conclude by multiplying on the right by the idempotent ehh, as a final result we obtain

π̃h,A = ehh;

Case II for each element cεl−1pij we insert on the left c1G
eii and we conclude by multi-

plying on the right by c1G
ehh so that:

π̃h,A = c1G
ehh;

Case III for each of the elements qij and q̄ij we insert on the left (eii, 0) and we conclude 
by multiplying on the right by (ehh, 0), we have

π̃h,A = (ehh, 0);

Case IV for each of the elements cεl−1qij and cεl−1 q̄ij we insert on the left (c1G
eii, 0) and 

we conclude by multiplying on the right by (c1G
ehh, 0) and we obtain

π̃h,A = (c1G
ehh, 0).

We note that the free algebra F 〈XG, ∗〉 is also freely generated by the elements

x+
i,g = xi,g + x∗

i,g and x−
i,g = xi,g − x∗

i,g,

where g ∈ G and i = 1, 2, . . .. In this paper we will refer to them as variables of type 
(g, μ) with g ∈ G and μ ∈ {+, −}. For any classical finite dimensional (Cp, ∗)-simple 
algebra A, we denote by m̃h,A the multilinear monomial built by replacing in the enriched 
standard total product π̃h,A each element of type (g, μ) with a variable of the same type in 
F 〈XG, ∗〉 and the minimal homogeneous idempotents with dimF A +1 pairwise different 
variables of degree 1G.

Clearly, the set of the variables in m̃h,A does not depend on the choice of h. When 
appropriate, we will denote by SA the set of variables of m̃h,A corresponding to the 
elements of the standard basis L(A) and with YA the set of variables of degree 1G
corresponding to the idempotents introduced to pass from πh,A to π̃h,A. We will say that 
SA is the set of designed variables and YA is the set of controlling variables. Clearly SA

is a disjoint union of the subsets SA,g,μ given by the variables of the same type (g, μ).
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Definition 10. Let A be a classical finite dimensional (Cp, ∗)-simple algebra. We denote 
by fh,A the (Cp, ∗)-graded polynomial obtained by alternating in m̃h,A the variables of 
SA,g,μ, for all g ∈ Cp and μ ∈ {+, −}.

Proposition 15. Let A be a classical finite dimensional (Cp, ∗)-simple algebra of size n. 
For each h ∈ [1, n] the polynomial fh,A is not a (Cp, ∗)-graded polynomial identity for A. 
More precisely there exists a (Cp, ∗)-evaluation eh,A such that

eh,A(fh,A) = π̃h,A.

Proof. The desired evaluation eh,A is determined by replacing each variable of m̃h,A with 
the corresponding element of A appearing in the enriched standard total product of A, 
π̃h,A. Clearly in each monomial of fh,A the variables in YA appear in the same order as 
in m̃h,A and these variables delimit all those of SA. Therefore, in order to not get zero, 
the evaluation of each variable in SA with elements of L(A) is uniquely determined by 
those of the bordering variables and by its type. Since we do not alternate variables of 
different type, we deduce that m̃h,A is the unique summand of fh,A which is not zero 
under the evaluation by eh,A and so the proof is completed. �

Clearly the polynomials fh,A’s are related to the dimension of the components Aμ
g of 

the (Cp, ∗)-algebra A.
More precisely |SA,g,μ| = dimF Aμ

g , hence if fh,A /∈ Id∗G(B) then dimF Bμ
g ≥ dimF Aμ

g

for all g ∈ Cp and μ ∈ {+, −}. Now we define some other polynomials closer to the 
structure of the given (Cp, ∗)-algebra, using the polynomials Φ̃α,h and Ψα,h introduced 
in Section 3.

Definition 11. Let A be a classical finite dimensional (Cp, ∗)-simple algebra of size n and 
let ν be a positive integer. For each h ∈ [1, n] we consider ν copies of fh,A in pairwise 
disjoint sets of variables and we denote by f (i)

h,A the i-th copy of fh,A. Then we define

f̄ν
h,A = f

(1)
h,A · · · f (ν)

h,A

moreover we consider:

f̃ν
h,A =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f̄ν
h,AΨα,h if A = (Mn, α, ∗)
f̄ν
h,A if A = (Mn(D), α, ∗)
f̄ν
h,AΦ̃α,hΨα,h if A = (Mn ⊕Mop

n , α, exc)
f̄ν
h,A if A = (Mn(D) ⊕Mn(D)op, α, exc)

By previous Propositions 2, 3 and 15 we obtain:

Proposition 16. Let A be a classical finite dimensional (Cp, ∗)-simple algebra of size n
and h ∈ [1, n]. If α(h) has maximal weight then the polynomial f̃ν

h,A is not a (Cp, ∗)-
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graded polynomial identity for A. More precisely there exists a (Cp, ∗)-evaluation ẽh,A
on the bases L(A) and B of A such that

ẽh,A(f̃ν
h,A) = π̃h,A.

Later in the paper when we consider the polynomial f̃ν
h,A we will tacitly assume 

that α(h) has maximal weight. Let us emphasize that this condition on α(h) is always 
satisfied, for all h ∈ [1, n] when the classical finite dimensional (Cp, ∗)-simple algebra is 
Mn(D) or Mn(D) ⊕Mn(D)op. Moreover, we have:

Lemma 6. Let A = (Mn, α, ∗) be a classical finite dimensional (Cp, ∗)-simple algebra. If 
η̄ is a (Cp, ∗)-evaluation on A, then

η̄(f̃ν
h,A) ⊆ spanF {eij |αi = αj = αh}.

Proof. By Definition 11, we have that

f̃ν
h,A = f̄ν

h,AΨα,h.

Let us consider the invariance subgroup Hα. If Hα = {1Cp
}, since, by Proposition 3, 

η̄(Ψα,h) ⊆ spanF {eij | αi = αj = αh} and f̄ν
h,A has homogeneous degree 1Cp

, then we 
are done. Let us now Hα �= {1Cp

}, then Hα = Cp and, ∀g ∈ Cp, wα(g) = wα(1Cp
) = m, 

for some m ≥ 1. It follows that each element of Cp appears exactly m times in α and 
n = mp. Let G = Cp, since |G| is odd, we can assume that α(γ(i)) = α(i)−1, ∀i ∈ [1, n]. 
Moreover, by Proposition 6, we can suppose that

α = (ε, . . . , ε︸ ︷︷ ︸
m

, . . . , εr, . . . , εr︸ ︷︷ ︸
m

, 1G, . . . , 1G︸ ︷︷ ︸
m

, εr+1, . . . , εr+1︸ ︷︷ ︸
m

, . . . , εp−1, . . . , εp−1︸ ︷︷ ︸
m

)

where p = 2r + 1.
Clearly, it is enough to consider the case ν = 1. Since the polynomials f̃h,A’s are 

multilinear we can assume that η̄ evaluates the designed variables with elements of the 
standard basis L(A) and the controlling variables with elements eij of the canonical basis 
En of degree 1G in A, i.e. αi = αj .

As in the proof of the Proposition 15 there is a unique summand of fh,A which is non 
zero under this evaluation and we can assume that it is m̃h,A, so

η̄(fh,A) = η̄(m̃h,A) �= 0.

Let observe that every element pij of L(A) appears once and only once in the evalu-
ation η̄. If i = γ(j), then piγ(i) = eiγ(i) while if i �= γ(j), then piγ(i) has two summands 
in the canonical basis En, eij and eγ(j)γ(i), of the same degree but only one contributes 
to the calculation of η̄(m̃h,A) �= 0. So, for each designed variable x of m̃h,A, x̄ will be 
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the unique element of the canonical basis En such that η̄(x) �= 0 and which contributes 
to the non-zero product η̄(m̃h,A). Therefore x̄ = eab for appropriate indices a, b ∈ [1, n], 
and, in this case, we write a = λ(x̄), b = ρ(x̄), x � x̄ and we say that “eab appears in 
η̄”or “η̄ contains eab”in the position x. If b = γ(a), then eab appears once and only once 
in η̄. If b �= γ(a), then at least one of the elements eab, eγ(a)γ(b) appears in η̄ and only one 
of the following pairs (eab, eab), (eab, eγ(a)γ(b)), (eγ(a)γ(b), eγ(a)γ(b)) has both components 
appearing in different positions x1 and x2. In fact, the components x̄1 and x̄2 correspond 
to designed variables of the same degree but of opposite signature: one is symmetric and 
the other one skew-symmetric.

Suppose now that h = 1, then

m̃h,A = m̃1,A = y0C1y1C2 · · · Cnyn,

where, for all i = 0, . . . , n, yi has degree 1G and, for all k ∈ [1, n], Ck are built by 
replacing in Ck each element of type (g, μ) with a variable of the same type in F 〈XG, ∗〉, 
so they have 2k− 1 designed variables and 2k− 2 controlling variables. If x is a designed 
variable of Ck, then we write x ∈ SA ∩ Ck. In particular C1 = z1

1 is a symmetric variable 
of degree 1G. If k = 2, then the variables in SA ∩ C2 are z2

1 , w
2, z2

2 . If k ≥ 3, then the 
elements of SA ∩ Ck are in the following order

zk1 , u
k
1 , v

k
1 , . . . , u

k
k−2, v

k
k−2, w

k, zk2

with |zk2 | = |zk1 |−1 = |ek1|, |wk| = |ekk| = 1G, |uk
i | = |vki |−1 = |eki+1|, ∀i ∈ [1, k − 2]. 

Since Ck has degree 1G, then z1
1 � z̄1

1 = ea1b1 with α(a1) = α(b1) and η̄(Ck) = eakdk
with 

α(ak) = α(dk), ∀k ≥ 2. Moreover η̄(m̃h,A) �= 0 and so α(a1) = α(b1) = α(ak) = α(dk), 
∀k ≥ 2, then there exists ḡ ∈ G such that ḡ = α(a1). We want to prove that ḡ = α(1). 
We observe that

ḡ = α(λ(z̄1
1)) = α(ρ(z̄1

1)) = α(λ(z̄k1 )) = α(ρ(z̄k2 )), ∀k ≥ 2.

Similarly, for all k ∈ [2, n], there exists gk ∈ G such that

gk = α(ρ(z̄k1 )) = α(λ(ūk
i )) = α(ρ(v̄ki )) = α(λ(w̄k)) = α(ρ(w̄k)) = α(λ(z̄k2 )).

Since

g−1
k ḡ = α−1(λ(z̄k2 ))α(ρ(z̄k2 )) = |zk2 | = α(k)−1α(1),

we obtain that

gk = ḡ α(k)α(1)−1.

For every g ∈ G, let Og = {i ∈ [1, n] | α(i) = g}, then λ(ūk
i ) = ρ(v̄ki ) ∈ Ogk where 

gk = α(ρ(z̄k1 )). Also λ(w̄k) = ρ(w̄k) ∈ Ogk .
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In particular both indices of the elements of the canonical basis En, determined by 
the designed variables of degree 1G, appearing in Ck belong to Ogk .

Clearly gk = gh if and only if α(k) = α(h), ∀k, h ∈ [1, n]. Then, for all k ∈ [1, n], Ogk

is identified by Oα(k). From our hypothesis, we have

Oε = [1,m], . . . , Oεr = [(r − 1)m + 1, rm], O1G
= [rm + 1, (r + 1)m],

Oεr+1 = [(r + 1)m + 1, (r + 2)m], . . . , Oεp−1 = [(p− 1)m + 1, pm].

Then, for all i ∈ [1, r] and for all k ∈ Oεi , the designed variables of degree 1G in Ck are 
all symmetric while, for all i ∈ [r + 1, p − 1] and for all k ∈ Oεi , the designed variables 
of degree 1G in Ck are all skew-symmetric.

Thus, for a fixed εi �= 1G and for all k ∈ Oεi , the elements of the basis En determined 
by these variables are pairwise distinct. Their number, for k ∈ Oεi , is 1, 3, 5, . . . , 2m − 1
hence they constitute the canonical basis of one of the simple blocks decomposing A1G

. 
More precisely, Oεi identifies the block Ui =< eab | α(a) = α(b) = ḡα(1)−1εi >∼= Mm, 
for all i ∈ [1, p − 1].

If m > 1, then there exists eab ∈ Ui such that e∗ab = ±eγ(a)γ(b) and a �= γ(b). If 
eγ(a)γ(b) ∈ Ui, then eab + e∗ab and eab − e∗ab should be evaluations of designed variables 
of the same type contrary to the fact that one element is symmetric and the other 
one is skew-symmetric. Therefore e∗ab �∈ Ui and so Ui is not ∗-invariant. It follows that 
the p − 1 blocks U1, . . . Up−1 identified by Oεi , for all i ∈ [1, p − 1], correspond two by 
two under the action of the involution ∗. In the decomposition of A1G

only one block 
U is stable under ∗. Let eab ∈ U then, for what as been said, α(a) = α(b) = ḡα(1)−1. 
Since α = (ε, . . . , ε, . . . , εr, . . . , εr, 1G, . . . , 1G, εr+1, . . . , εr+1, . . . , εp−1, . . . , εp−1) we have 
α(a) = α(b) = 1G, then ḡ = α(1) as desired.

Let now m = 1. In this case n = p and α : [1, n] → G is bijective and ∗ = θp. Let us 
consider the monomial Cp whose designed variables are in the following order

zp1 , u
p
1, v

p
1 , . . . , u

p
p−2, v

p
p−2, w

p, zp2

with degree

|e1p|, |ep2|, |e2p|, . . . |epp−1|, |ep−1p|, |epp|, |ep1|

respectively, and only zp1 and zp2 are symmetric.
Since α is bijective there exist j, k ∈ [1, n] such that α(j) = ḡ and α(k) = gp. Then 

zp1 � ejk = z̄p1 , zp2 � ekj = z̄p2 , up
i � ekci = ūp

i , v
p
i � ecik = v̄pi , wp � ekk = w̄p. As the 

variables up
1, . . . , u

p
p−2, wp, zp2 are both of different degrees one of them must be evaluated 

in ekγ(k). Considering that ekγ(k) is symmetric then zp2 � ekγ(k), so γ(k) = j and 
|ekγ(k)| = |zp2 | = |ep1| that is α(k)−1α(γ(k)) = α(p)−1α(1). This implies that α(k)−2 =
(εp−1)−1ε = ε2 and α(k) = ε−1. Hence ḡ = α(j) = α(γ(k)) = α(k)−1 = ε = α(1) and 
we are done.
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Suppose now that h = n and let

η̄(fn,A) = η̄(m̃n,A) = ±eij .

It follows that α(i) = α(j) and we want to prove that α(i) = α(n) = ε−1. Notice that

m̃n,A = y0z
n
2 y1C1 · · · yn−1Cn−1ynCnyn+1.

Hence zn2 � eab, y0 � eia, yn+1 � ekj with α(i) = α(a), α(k) = α(j), α(a)−1α(b) =
|zn2 | = |en1| = α(n)−1α(1) = ε2. The evaluation η̂ obtained by η̄ replacing η̄(yn+1) with 
η̂(yn+1) = eki is admissible and we have

η̂(f1,A) = η̂(m̃1,A) = ebb.

By the first part of the proof we obtain α(b) = α(1) = ε, then α(a)−1ε = ε2 and so 
α(a) = ε−1 = α(n).

If 1 < h < n the result is obtained as before. �
Now, as at the beginning of the proof of Lemma 6, by Proposition 3 it follows that:

Lemma 7. Let A = (Mn⊕Mop
n , α, ∗) be classical finite dimensional (Cp, ∗)-simple algebra 

and let π↑ be the projection on the first component defined by π↑(a, b) = (a, 0). If Hα =
{1Cp

} and η̄ is a (Cp, ∗)-evaluation on A, then

π↑(η̄(f̃ν
h,A)) ⊆ spanF {(eij , 0) |αi = αj = αh}.

Notice that the algebras considered in the previous lemmas are exactly the (Cp, ∗)-
singular algebras of Definition 7. We return to a more general situation, considering:

Proposition 17. Let (A, α, ∗A) and (B, β, ∗B) be classical finite dimensional (Cp, ∗)-
simple algebras of same dimension. If the polynomial f̃ν

h,A is not a (Cp, ∗)-graded poly-
nomial identity for B then A and B are isomorphic as (Cp, ∗)-algebras.

Proof. Clearly fh,A /∈ Id∗G(B), hence dimF Bμ
g ≥ dimF Aμ

g for all g ∈ Cp and μ ∈ {+, −}. 
Since A and B have the same dimension it follows that dimF Bμ

g = dimF Aμ
g and, by 

Corollary 1, either A and B are isomorphic as (Cp, ∗)-algebras or A = (Mn⊕Mop
n , α, exc)

and B = (Mn⊕Mop
n , β, exc). In this situation the thesis follows from Proposition 8, since 

B does not satisfy the polynomial Φ̃α,h. �
We conclude this section by extending the previous definitions and results to the case 

when we consider the algebra A = UT ∗
Cp

(A1, . . . , Am), where m > 1 and Ak is a classical 
finite dimensional (Cp, ∗)-simple algebra of size nk with grading defined by the map αk, 
for each k ∈ [1, m].
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We start by considering, for each k ∈ [1, m], the standard basis L(Ak) of the (Cp, ∗)-
simple algebra Ak. We denote by Lk,k(A) its image ϕ(L(Ak)) in A. Moreover, for all 
k, l ∈ [1, m] with k < l, we consider also the standard bases Lk,l(A) of the subspaces 
Uk l ⊕Uk l of J(A) consisting of the elements (eij ⊗ ekl) ± (eij ⊗ ekl)θ2s , where i ∈ [1, sk]
and j ∈ [1, sl]. At the end, we get:

Definition 12. The standard basis of A = UT ∗
Cp

(A1, . . . , Am) is

L(A) :=
⋃

k,l∈[1,m];k≤l

Lk,l(A)

Next we have:

Definition 13. Let ν ≥ m, u1, u2, . . . , um−1 be homogeneous symmetric variables of type 
(|ui|, +) and (h1, h2, . . . , hm) be a sequence of positive integers, such that hk ∈ [1, nk], 
then we define:

fν
h1,...,hm,u1,...,um−1,A = f̃ν

h1,A1
u1f̃

ν
h2,A2

u2 · · · f̃ν
hm−1,Am−1

um−1f̃
ν
hm,Am

Here, we assume that the sets of variables involved in the polynomials f̃ν
hk,Ak

and also 

{u1, . . . , um−1} are pairwise disjoint. Clearly the polynomial f (i)
hk,Ak

and the correspond-
ing monomial m̃(i)

hk,Ak
have the same set of variables. For i ∈ [1, ν], let Ui be the set of all 

designed variables occurring in f (i)
h1,A1

, . . . , f (i)
hm,Am

, together with ui when i < m. Then 
each set Ui is the disjoint union of its subsets Ui,g,μ, given by the variables of the same 
type (g, μ). Set

dA
k := dimF Ak, dA

k,g,μ := dimF (Ak)μg ,

and

dA
ss,g,μ := dimF (A1 ⊕ . . .⊕Am)μg =

∑
k∈[1,m]

dA
k,g,μ.

In this way one has:

|Ui,g,μ| =
{

1 + dA
ss,g,μ if g = |ui|, μ = + and i ∈ [1,m− 1]

dA
ss,g,μ otherwise

(9)

In a similar way, we denote by Yi the set of all controlling variables occurring in 
f

(i)
h1,A1

, . . . , f (i)
hm,Am

. We conclude with the following:

Definition 14. Let A = UT ∗
Cp

(A1, . . . , Am), if m > 1 we denote by

f̃ν
h ,...,h ,u ,...,u ,A
1 m 1 m−1
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the (Cp, ∗)-graded polynomial obtained by alternating in fν
h1,...,hm,u1,...,um−1,A

the vari-
ables of the set Ui,g,μ, for each i ∈ [1, ν], g ∈ Cp and μ ∈ {+, −}.

Now we choose suitable Cp-degrees for each of the variables u1, . . . , um−1. More pre-
cisely, similarly to what was considered in the proof of Theorem 3, we define:

ik =
{

hk if Ak = Mnk
or Ak = Mnk

⊕Mop
nk

p(hk − 1) + 1 if Ak = Mnk
(D) or Ak = Mnk

(D) ⊕Mnk
(D)op,

and, for k = 1, . . . , m − 1,

|uk|F 〈XG,∗〉 = gk = αk(ik)−1αk+1(ik+1)

therefore the variable uk and the element eikik+1 ⊗ ek k+1 of J(A) have the same Cp-
degree.

Proposition 18. Let A = UT ∗
Cp

(A1, . . . , Am) with m > 1. If the variables u1, . . . , um−1

have the Cp-degrees defined before, then the polynomial f̃ν
h1,...,hm,u1,...,um−1,A

is not a 
(Cp, ∗)-graded polynomial identity for A.

Proof. Let us recall that, by our assumption, αk(hk) has maximal weight for all k ∈
[1, m]. Hence, by Proposition 16, for each k ∈ [1, m] there exists a (Cp, ∗)-evaluation 
ẽhk,Ak

on the bases L(Ak) and Bk of Ak such that

ẽhk,Ak
(f̃ν

hk,Ak
) = π̃hk,Ak

.

By the ∗-embedding ϕ we regard these elements as belonging to the algebra A, which 
in its turn is, by construction, a (Cp, ∗)-subalgebra of (M2s, ᾱ, θ2s). Clearly we obtain

ϕ(π̃h1,A1)(ei1i2 ⊗ e12) · · · (eim−1im ⊗ em−1m)ϕ(π̃hm,Am
) = ei1im ⊗ e1m

where the indexes i1, . . . , im are those after the Definition 14. We can glue these evalu-
ations ẽh1,A1 . . . , ̃ehm,Am

and extend the resulting evaluation by replacing the variables 
u1, . . . , um−1 with the elements ei1i2 ⊗ e12 + (ei1i2 ⊗ e12)θ2s , . . . , (eim−1im ⊗ em−1m) +
(eim−1im ⊗ em−1m)θ2s which have the same type (g1, +), . . . , (gm−1, +) as them. Now we 
easily obtain the thesis. �

In the rest of the paper, given the algebra A = UT ∗
Cp

(A1, . . . , Am) we will denote 

by f̃ν
A the polynomial considered in Proposition 16, if m = 1, and in Proposition 18, if 

m > 1, respectively.
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8. Main results

According to Theorem 4, we have that any minimal variety (see Definition 1) of (Cp, ∗)-
algebras of (Cp, ∗)-exponent d is generated by a suitable upper block triangular matrix 
algebra UT ∗

Cp
(A1, . . . , Am), where A1, . . . , Am are classical finite dimensional (Cp, ∗)-

simple algebras such that dimF (A1 ⊕ · · · ⊕ Am) = d. To provide a characterization of 
these varieties we will prove that UT ∗

Cp
(A1, . . . , Am) generates a minimal variety for all 

sequences A1, . . . , Am of such (Cp, ∗)-simple algebras.
Let us start with:

Proposition 19. Let A = UT ∗
Cp

(A1, . . . , Am) and B = UT ∗
Cp

(B1, . . . , Bn) with the same 

(Cp, ∗)-exponent and let ν := m +n −1. If f̃ν
A is not a (Cp, ∗)-graded polynomial identity 

for B, then A and B are isomorphic as (Cp, ∗)-algebras.

Proof. We start by proving that:

(a) dA
ss,g,μ = dB

ss,g,μ for every g ∈ Cp and μ ∈ {+, −};
(b) n = m;
(c) either dA

k = dB
k for all k ∈ [1, m] or dA

k = dB
m+1−k for all k ∈ [1, m].

Since f̃ν
A /∈ Id∗

Cp
(B), there exists a non-zero (Cp, ∗)-graded evaluation eB of it. The 

polynomial f̃ν
A is multilinear then we evaluate the designed variables on the elements of 

the standard basis L(B) and we evaluate all the remaining variables on the elements of 
the canonical basis BB.

Since the Jacobson radical J(B) is nilpotent of index n there exists l ∈ [m, m +n − 1]
such that all the variables of Ul and Yl must be evaluated only by elements of the 
semisimple subalgebra B = B1 ⊕ · · · ⊕Bn of B.

As, for every g ∈ Cp and μ ∈ {+, −}, f̃ν
A alternates in the set Ul,g,μ, we have that 

|Ul,g,μ| ≤ dB
ss,g,μ, and by (9) we obtain

dA
ss,g,μ = |Ul,g,μ| ≤ dB

ss,g,μ for all g ∈ Cp and μ ∈ {+,−}.

Then

exp∗
Cp

(A) =
∑
g∈Cp

μ∈{+,−}

dA
ss,g,μ ≤

∑
g∈Cp

μ∈{+,−}

dB
ss,g,μ = exp∗

Cp
(B) = exp∗

Cp
(A)

and, consequently, we get dA
ss,g,μ = dB

ss,g,μ for every g ∈ Cp and μ ∈ {+, −} which proves 
item (a).

As a consequence, the evaluation eB involves for the variables of Ul all and only the 
elements of the standard basis of B and each one exactly once. Since f̃ν

A is a sum of 
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terms χ(fν
h1,...,hm,u1,...,um−1,A

), for χ ranging in the appropriate group of permutations, 
we may assume that

eB(fν
h1,...,hm,u1,...,um−1,A) �= 0B.

Since BiBj = 0B for all i �= j ∈ [1, n], then, for each k ∈ [1, m], the polynomial f (l)
hk,Ak

must be evaluated in a unique block of B and so the elements of Li,i(B) and Lj,j(B)
must appear in polynomials corresponding to different indexes ki, kj ∈ [1, m]. Therefore, 
n ≤ m.

If m = 1, then n = 1. In this case A and B are classical finite dimensional (Cp, ∗)-
simple algebras having the same dimension. Therefore, by Proposition 17, A and B are 
isomorphic as (Cp, ∗)-algebras since f̃ν

h1,A1
= f̃ν

A /∈ Id∗
Cp

(B).
Thus, assume that m > 1. For every j ∈ [1, m − 1], f̃ν

A alternates in the set Uj,|uj |,+
and, by (9), we have

|Uj,|uj |,+| = 1 + dA
ss,|uj |,+ = 1 + dB

ss,|uj |,+.

Therefore in the evaluation eB we must use at least m − 1 elements of J(B). This 
implies that m − 1 < n and so m ≤ n. Thus m = n and the item (b) is proved also in 
this case.

We remark that each of these m −1 elements of J(B) must appear as the evaluation via 
eB of one and only one designed variable in the sets U1, . . . , Um−1. All other variables of 
the polynomial f̃ν

A are necessarily evaluated in elements of B. Moreover, we observe that, 
B1J(B)B2 · · ·Bm−1J(B)Bm �= 0B and BmJ(B)Bm−1 · · ·B2J(B)B1 �= 0B, whereas we 
obtain 0B for every rearrangement of the Bj’s into the above sequences. This means that 
either the polynomial f (l)

hk,Ak
is evaluated in Bk for all k ∈ [1, m] or it is evaluated in 

Bm−k+1 for all k = 1, . . . , m. The first case is equivalent to say that

π↑(eB(fν
h1,...,hm,u1,...,um−1,A)) �= 0B,

the second case is equivalent to request

π↓(eB(fν
h1,...,hm,u1,...,um−1,A)) �= 0B,

where π↑ and π↓ are the Cp-graded homomorphisms of (M2s, β̄) defined as in the proof 
of Theorem 3 for (M2s, ᾱ).

Let us assume first that π↑(eB(fν
h1,...,hm,u1,...,um−1,A

)) �= 0B. Hence

0B �= π↑(eB(f̃ν
h1,A1

))π↑(eB(u1)) · · ·π↑(eB(um−1))π↑(eB(f̃ν
hm,Am

)). (10)

Because, via eB, the polynomial f (l)
hk,Ak

is evaluated in Bk, the whole polynomial f̃ν
hk,Ak

is evaluated in the same block Bk and the elements π↑(eB(u1)), . . . , π↑(eB(um−1) lie 
respectively in the subspaces U1 2, . . . Um−1m of B. Clearly the above polynomials are 
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not identities of Bk for all k ∈ [1, m]. As first result we have dA
k,g,μ ≤ dB

k,g,μ for all 
k ∈ [1, m], g ∈ Cp and μ ∈ {+, −}; which implies dA

k ≤ dB
k . Once again we obtain 

dA
k = dB

k for all k ∈ [1, m] because

exp∗
Cp

(A) =
m∑

k=1

dA
k ≤

m∑
k=1

dB
k = exp∗

Cp
(B) = exp∗

Cp
(A).

In the second case, the polynomial f (l)
hk,Ak

is evaluated in Bm+1−k for each k ∈ [1, m]
and so, as above, dA

k = dB
m+1−k which completes the proof of item (c).

Now we continue the proof with the analysis of the first case.
Let us denote wk = π↑(eB(uk)), for all k ∈ [1, m]. As we said above, wk ∈ Uk k+1 and 

so wk = (erkck ⊗ ek k+1) for suitable indexes rk ∈ [1, sk] and ck ∈ [1, sk+1]. Moreover:

dimFAk = dimFBk and f̃ν
hk,Ak

/∈ Id∗
Cp

(Bk), for all k ∈ [1,m].

Hence, by Proposition 17, the diagonal blocks (Ak, αk, ∗Ak
) and (Bk, βk, ∗Bk

) are iso-
morphic as (Cp, ∗)-algebras. From the results on isomorphic classical finite dimensional 
(Cp, ∗)-simple algebras contained in the previous sections, specifically Proposition 6, 8
and Corollary 1, it follows that, for each k ∈ [1, m], there exist gk ∈ Cp and �k ∈ Snk

such that

βk = gkα
k�−1

k .

Moreover:
�kγnk

= γnk
�k if Ak = (Mnk

, αk, ∗Ak
),

�k = 1Snk
if Ak = Mnk

(D) or Ak = Mnk
(D) ⊕Mnk

(D)op.
We remark that, when Ak = Mnk

⊕Mop
nk

, the previous conclusion follows from the proof 
of Proposition 8, because π↑(eB(f̃ν

hk,Ak
)) �= 0 and so π↑(eB(Φ̃αk,hk

)) �= 0 too. As final 
result, by Proposition 13, it follows that

B ∼= UT ∗
Cp,g(A1, . . . , Am)

where g = (g1, . . . , gm) ∈ Cm
p . Hence we assume that B = UT ∗

Cp,g(A1, . . . , Am).
Let us consider the following subsets of [1, m]:

S = { k | k ∈ [1,m] andAk is ∗-singular}

and

R = { k | k ∈ [1,m] andAk is ∗-regular}.

Clearly S ∪R = [1, m] and S ∩R = ∅.
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If S = ∅ then, by Definition 7 and Proposition 13, by multiplying for all k ∈ [1, m]
the elements of the word gkαk by the element g−1

k we obtain a finite dimensional (Cp, ∗)-
algebra isomorphic to B. In this way

B = UT ∗
Cp,g(A1, . . . , Am) ∼= UT ∗

Cp,1Cp
(A1, . . . , Am) = A.

Similarly, when S = {q} has only one element, let gq = (gq, . . . , gq) ∈ Cm
p . In this case, 

for all k �= q, we multiply the word gkαk by gqg
−1
k and we obtain:

B = UT ∗
Cp,g(A1, . . . , Am) ∼= UT ∗

Cp,gq (A1, . . . , Am) = A.

Now, let us assume that t, v ∈ S with t < v. In this case we consider the factor of 
fν
h1,...,hm,u1,...,um−1,A

defined by:

fν
[t,v],A = f̃ν

ht,At
ut · · ·uv−1f̃

ν
hv,Av

.

The Cp-degree of this polynomial is αt(it)−1αv(iv) and moreover, since

0B �= π↑(eB(fν
[t,v],A)) = π↑(eB(f̃ν

ht,At
))(ertct⊗et t+1) · · · (erv−1cv−1⊗ev−1 v)π↑(eB(f̃ν

hv,Av
)),

we have

αt(it)−1αv(iv) = αt(rt)−1g−1
t gvα

v(cv−1).

Since t, v ∈ S by Definitions 7 and 14, Lemmas 6 and 7, it follows it = ht, iv = hv and 
moreover

αt(rt) = αt(it), αv(cv−1) = αv(iv), that is gt = gv.

Let us indicate by c the common value of gk for all k ∈ S and let c = (c, . . . , c) ∈ Cm
p . 

Once again, for all k ∈ R, we multiply the word gkαk by cg−1
k and, by Proposition 13, 

we have:

B = UT ∗
Cp,g(A1, . . . , Am) ∼= UT ∗

Cp,c(A1, . . . , Am) = A,

concluding the proof of our result in the case π↑(eB(fν
h1,...,hm,u1,...,um−1,A

)) �= 0B.
Finally, when π↓(eB(fν

h1,...,hm,u1,...,um−1,A
)) �= 0B, the result follows by Lemma 3 and 

the arguments considered above. �
Remark 4. The isomorphisms of the previous proposition are given by a finite sequence 
of basic moves.

As an immediate consequence of the previous proposition we obtain the following
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Theorem 5. Let A = UT ∗
Cp

(A1, . . . , Am) and B = UT ∗
Cp

(B1, . . . , Bn), then

A ∼= B ⇔ Id∗Cp
(A) = Id∗Cp

(B).

Now, we conclude with the main result of this paper

Theorem 6. Let V be a variety of (Cp, ∗)-algebras generated by a finite dimensional 
(Cp, ∗)-algebra. Hence, V is minimal of exponent d if and only if V = var∗Cp

(A) where 
A = UT ∗

Cp
(A1, . . . , Am) with A1, . . . , Am classical finite dimensional (Cp, ∗)-simple al-

gebras satisfying dimF (A1 ⊕ . . .⊕Am) = d.

Proof. Let A1, . . . , Am be a sequence of classical finite dimensional (Cp, ∗)-simple al-
gebras satisfying dimF (A1 ⊕ . . . ⊕ Am) = d and A = UT ∗

Cp
(A1, . . . , Am). We consider 

U∗
Cp

a subvariety of var∗Cp
(A) generated by a finite dimensional (Cp, ∗)-algebra such 

that exp∗
Cp

(A) = exp∗
Cp

(U∗
Cp

). By Theorem 4, we get that there exist classical fi-
nite dimensional (Cp, ∗)-simple algebras B1, . . . , Bn such that, B = UT ∗

Cp
(B1, . . . , Bn), 

Id∗
Cp

(U∗
Cp

) ⊆ Id∗
Cp

(B) and exp∗
Cp

(U∗
Cp

) = exp∗
Cp

(B). Since f̃ν
B is not a (Cp, ∗)-graded 

polynomial identity for A, from Proposition 19, we can conclude that A and B are iso-
morphic as (Cp, ∗)-algebras. Consequently, Id∗

Cp
(A) = Id∗

Cp
(B) and so var∗Cp

(A) = U∗
Cp

.
Conversely the result follows from Theorem 4. �
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