This paper highlights the potential of Sargassum algae, recovered from raw beach seaweed wastes, as a valid source of valuable sodium alginate. Alginate is a biodegradable, highly attractive polysaccharide widely used in food, pharmaceuticals, and biomedicine applications. The aim of this work is to employ a new eco-sustainable and cost-effective extractive method to obtain alginate as a raw material from pollutant organic Sargassum seaweeds. Algae were exposed to microwave pre-treatment under static and dynamic conditions, and three different extractive protocols were followed: (a) conventional, (b) hot water and (c) alkaline method. All samples were characterized by GPC, SEM, FTIR/ATR and TGA. It was found that alginate's best performances were obtained by the microwave dynamic pre-treatment method followed by alkaline extractive protocol. Nevertheless, the microwave pre-treatment of algae allowed the easiest breaking of their cell walls and the following fast releasing of sodium alginate. The authors demonstrated that microwave-enhanced extraction is an effective way to obtain sodium alginate from Sargassum-stranded seaweed waste materials in a cost-effective and eco-sustainable approach. They also assessed their applications as mulching films for agricultural applications.
Microwave Assisted Extraction of Raw Alginate as a Sustainable and Cost-Effective Method to Treat Beach-Accumulated Sargassum Algae
De Bonis M. V.;Ruocco G.
;
2023-01-01
Abstract
This paper highlights the potential of Sargassum algae, recovered from raw beach seaweed wastes, as a valid source of valuable sodium alginate. Alginate is a biodegradable, highly attractive polysaccharide widely used in food, pharmaceuticals, and biomedicine applications. The aim of this work is to employ a new eco-sustainable and cost-effective extractive method to obtain alginate as a raw material from pollutant organic Sargassum seaweeds. Algae were exposed to microwave pre-treatment under static and dynamic conditions, and three different extractive protocols were followed: (a) conventional, (b) hot water and (c) alkaline method. All samples were characterized by GPC, SEM, FTIR/ATR and TGA. It was found that alginate's best performances were obtained by the microwave dynamic pre-treatment method followed by alkaline extractive protocol. Nevertheless, the microwave pre-treatment of algae allowed the easiest breaking of their cell walls and the following fast releasing of sodium alginate. The authors demonstrated that microwave-enhanced extraction is an effective way to obtain sodium alginate from Sargassum-stranded seaweed waste materials in a cost-effective and eco-sustainable approach. They also assessed their applications as mulching films for agricultural applications.File | Dimensione | Formato | |
---|---|---|---|
polymers23.pdf
accesso aperto
Tipologia:
Pdf editoriale
Licenza:
Creative commons
Dimensione
3.06 MB
Formato
Adobe PDF
|
3.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.