We propose AFTNet, a novel network-constraint survival analysis method based on the Weibull accelerated failure time (AFT) model solved by a penalized likelihood approach for variable selection and estimation. When using the log-linear representation, the inference problem becomes a structured sparse regression problem for which we explicitly incorporate the correlation patterns among predictors using a double penalty that promotes both sparsity and grouping effect. Moreover, we establish the theoretical consistency for the AFTNet estimator and present an efficient iterative computational algorithm based on the proximal gradient descent method. Finally, we evaluate AFTNet performance both on synthetic and real data examples.
A Network-Constrain Weibull AFT Model for Biomarkers Discovery
Angelini C.;Iuliano A.
2024-01-01
Abstract
We propose AFTNet, a novel network-constraint survival analysis method based on the Weibull accelerated failure time (AFT) model solved by a penalized likelihood approach for variable selection and estimation. When using the log-linear representation, the inference problem becomes a structured sparse regression problem for which we explicitly incorporate the correlation patterns among predictors using a double penalty that promotes both sparsity and grouping effect. Moreover, we establish the theoretical consistency for the AFTNet estimator and present an efficient iterative computational algorithm based on the proximal gradient descent method. Finally, we evaluate AFTNet performance both on synthetic and real data examples.File | Dimensione | Formato | |
---|---|---|---|
2024_A Network-Constrain Weibull AFT Model for Biomarkers Discovery_Angelini et al.pdf
accesso aperto
Licenza:
Dominio pubblico
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.