We propose AFTNet, a novel network-constraint survival analysis method based on the Weibull accelerated failure time (AFT) model solved by a penalized likelihood approach for variable selection and estimation. When using the log-linear representation, the inference problem becomes a structured sparse regression problem for which we explicitly incorporate the correlation patterns among predictors using a double penalty that promotes both sparsity and grouping effect. Moreover, we establish the theoretical consistency for the AFTNet estimator and present an efficient iterative computational algorithm based on the proximal gradient descent method. Finally, we evaluate AFTNet performance both on synthetic and real data examples.

A Network-Constrain Weibull AFT Model for Biomarkers Discovery

Angelini C.;Iuliano A.
2024-01-01

Abstract

We propose AFTNet, a novel network-constraint survival analysis method based on the Weibull accelerated failure time (AFT) model solved by a penalized likelihood approach for variable selection and estimation. When using the log-linear representation, the inference problem becomes a structured sparse regression problem for which we explicitly incorporate the correlation patterns among predictors using a double penalty that promotes both sparsity and grouping effect. Moreover, we establish the theoretical consistency for the AFTNet estimator and present an efficient iterative computational algorithm based on the proximal gradient descent method. Finally, we evaluate AFTNet performance both on synthetic and real data examples.
2024
File in questo prodotto:
File Dimensione Formato  
2024_A Network-Constrain Weibull AFT Model for Biomarkers Discovery_Angelini et al.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/186915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact