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ABSTRACT
We propose AFTNet, a novel network-constraint survival analysis method based on the Weibull accelerated failure time (AFT)
model solved by a penalized likelihood approach for variable selection and estimation. When using the log-linear representation,
the inference problem becomes a structured sparse regression problem for which we explicitly incorporate the correlation patterns
among predictors using a double penalty that promotes both sparsity and grouping effect. Moreover, we establish the theoretical
consistency for the AFTNet estimator and present an efficient iterative computational algorithm based on the proximal gradient
descent method. Finally, we evaluate AFTNet performance both on synthetic and real data examples.

1 Introduction

In the last 20 years, the development of high-throughput technol-
ogy has produced a large amount of heterogeneous biomolecular
data that, together with clinical information about patients,
promises to identify stable and interpretable biomarkers to
predict survival and characterize personalized therapy. Thereby,
there has been a growing interest in developingmethods for high-
dimensional data that integrate genome-scale knowledge into
regression models for survival data to create a comprehensive
view of molecular mechanisms and disease progression. In this
context, the Cox proportional hazard model (Cox 1972), which
assumes a constant hazard ratio over time, has been naturally

extended to deal with the so-called problem p ≫ n, representing
𝑝 the number of regressors and 𝑛 the number of samples (see
the pioneeristic papers by Antoniadis, Fryzlewicz, and Letué
2010; Benner et al. 2010; Du, Ma, and Liang 2010; Fan and Li
2002; Gui and Li 2005; Tibshirani 1997; H. H. Zhang and Lu
2007). At the same time, the availability of databases encoding
information about genes/proteins regulatory mechanisms and
pathways demanded more advanced techniques to integrate this
knowledge into the models. Network-penalized Cox regression
methods explicitly incorporated the relationships among the vari-
ables in the penalty term, improving the prediction capabilities
and better addressing the inherent structure of omics data (Gong,
Wu, and Clarke 2014; Huang et al. 2014, 2016; Iuliano et al. 2016,
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2018; Iuliano et al. 2021; Jiang and Liang 2018; Kim et al. 2012; S.
Wang et al. 2009; R. Li et al. 2021; Sun et al. 2014; Verissimo et al.
2016; Wu and Wang 2013; W. Zhang et al. 2013).

An attractive alternative to the Cox model is the accelerated
failure time (AFT) model, where the covariates can accelerate or
decelerate the life course of an event by some constant. Different
papers extended the AFT model to the high-dimensional case,
considering semiparametric estimators based on weighted least
squares or rank-based losses. Huang, Ma, and Xie (2006) and
Huang andMa (2010) introduced the regularized Stute’s weighted
least squares estimator combining least absolute shrinkage and
selection operator (LASSO) (Tibshirani 1996), the threshold-
gradient-directed regularization method (Friedman and Popescu
2004), and the bridge penalty (Frank and Friedman 1993). Huang
and Harrington (2005), Datta, Le-Rademacher, and Datta (2007),
S. Wang et al. (2008), and Khan and Shaw (2013) presented the
regularized Buckley–James estimator using LASSO, elastic net
(Zou and Hastie 2005), and Dantzig selector (Candes and Tao
2007). Sha, Tadesse, and Vannucci (2006) developed a Bayesian
variable selection approach; Engler and Li (2009) andCai, Huang,
and Tian (2009) developed the regularized Gehan’s estimator
considering LASSO and the elastic net penalties. Recently, Cheng
et al. (2022) considered the Stute’sweighted least squares criterion
combinedwith the l0-penalty extending the support detection and
root finding (SDAR) algorithm (Huang et al. 2018) for the linear
regression model to the AFT model.

In the context of network-penalized AFTmodels, Ren et al. (2019)
developed a robust network-based variable selection method
based on the regularized Stute’s least absolute deviation estimator
with a penalty of an 𝑀𝐶𝑃 + 𝑙1 form. MCP is the minimax
concave penalty (C. Zhang 2010) encouraging sparsity, and
the 𝑙1 term promotes the network structure incorporating the
network adjacency through the Pearson correlation coefficient.
Recently, Suder and Molstad (2022) proposed a new alternating
direction method of the multipliers algorithm based on proximal
operators for fitting semiparametric AFTmodels. They minimize
a penalized Gehan’s estimator considering both the weighted
elastic net and the weighted sparse group LASSO as penalties.
The R package penAFT (https://cran.r-project.org/web/packages/
penAFT/index.html) implements the proposed approach.

The literature on high-dimensional parametric AFT models is
less extensive than semiparametric ones. However, these models
offer an interesting alternative to weighted least squares or rank-
based estimators since they are simple, relatively robust against
the misspecification of the assumed distribution (Hutton and
Monaghan 2002), and maximum likelihood estimation (MLE)
can be used for inference. Park and Do (2018) proposed LASSO,
adaptive LASSO (Zou 2006), and smoothly clipped absolute
deviation (SCAD) (Fan and Li 2001) for both the log-normal
and the Weibull AFT models. Barnwal, Cho, and Hocking (2022)
presented an interesting implementation of the AFT model
using XGBoost (Chen and Guestrin 2016), a widely used library
for gradient boosting, considering the log-normal, log-logistic,
and the Weibull AFT models. Alam, Rahman, and Bari (2022)
penalized the log-likelihood function with Firth’s penalty term
(Firth 1993) to overcome the problems due to small sample
or rare events for the log-normal, log-logistic, and the Weibull
AFT models.

To the best of the authors’ knowledge, the problem of incorporat-
ing biomolecular knowledge into high-dimensional parametric
AFT models still needs to be addressed. In this paper, we fill this
gap with AFTNet, a novel method for the Weibull AFT model
based on a double penalty that combines LASSO and quadratic
Laplacian penalties (C. Li and Li 2010) to promote both sparsity
and grouping effect. When using the log-linear representation,
the inference becomes a structured sparse regression problem
for which we implement an efficient iterative computational
algorithm based on the proximal gradient descent method and
cross-validated linear predictors approach (CV-PL) (Dai and
Breheny 2024). Moreover, we establish the proposed estimator’s
theoretical consistency and evaluate its performance on synthetic
and real data examples.

The paper is organized as follows. Section 2 presents the mathe-
matical background. Section 3 introduces the AFTNet estimator
and its theoretical property. Section 4 discusses the numerical
implementation. Results are shown in Sections 5 and 6, and
conclusions are drawn in Section 7.

2 Mathematical Background

The AFT model is a flexible mathematical framework that
describes the relationship between a set of covariates and a
time-to-event response. In this model, the nonnegative random
variable 𝑇 describing the time to event is related to covariates
𝒙 = (𝑥1, … , 𝑥𝑝)

𝑇 ∈ ℝ𝑝 through the hazard function

ℎ(𝑡) = ℎ0

(
𝑡𝑒−𝒙⊤𝜷

)
𝑒−𝒙⊤𝜷 , (1)

where 𝜷 = (𝛽1, … , 𝛽𝑝)
𝑇 is the parameter vector, 𝒙⊤𝜷 denotes

the joint effect of covariates, and ℎ0(⋅) is the baseline hazard
function. The baseline hazard function represents the hazard
without the effects of covariates, that is, when 𝒙 = (0, … , 0)𝑇 . The
hazard function in Equation (1) explains the name AFT model,
whereas in a proportional hazards (PH) model the covariates
act multiplicatively on the hazard and in an AFT model the
covariates act multiplicatively on time. Then in AFT models,
the effect of covariates is such that if 𝑒−𝒙⊤𝜷

> 1 a deceleration
of the survival (time) process ensues and if 𝑒−𝒙⊤𝜷

< 1 then an
acceleration of the survival (time) process occurs. The term 𝑒𝒙

⊤𝜷

is known as the accelerated factor.

Let now consider a study with a number 𝑛 of individuals from a
homogeneous population and suppose that for each individual,
the values of 𝑝 explanatory variables 𝒙𝑖 = (𝑥1𝑖, … , 𝑥𝑝𝑖)

𝑇 have been
recorded, 𝑖 = 1, … , 𝑛. Let 𝑇𝑖 ≥ 0 be the survival time (failure time)
and 𝐶𝑖 the censoring time for each 𝑖 = 1, … , 𝑛. We assume a right
censoring mechanism and make the following hypotheses:

A1. Given covariates 𝒙𝑖 , 𝑇𝑖s and 𝐶𝑖s are conditionally inde-
pendent and the pairs (𝑇𝑖, 𝐶𝑖)s are also conditionally
independent for 𝑖 = 1, … , 𝑛;

A2. Given covariates 𝒙𝑖 , 𝐶𝑖s are conditionally noninformative
about 𝑇𝑖s.

With the introduction of the censoring variable, the observations
can be represented by the pairs (𝜉𝑖, 𝛿𝑖), where 𝜉𝑖 = min(𝑇𝑖, 𝐶𝑖) and
𝛿𝑖 = 0 if the 𝑖th individual is censored, 𝛿𝑖 = 1 if not.
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AFT models are unified by adopting a log-linear representation
of the model. This representation shows that the AFT model
for survival data is closely related to the general linear model
used in regression analysis. Moreover, most computer software
packages adopt the log-linear AFT form when fitting the data.
The log-linear representation of the AFT model describes a
linear relationship between the logarithm of survival time and
covariates given by

log 𝑇𝑖 = 𝒙⊤
𝑖 𝜷 + 𝜎𝜀𝑖, 𝑖 = 1, … , 𝑛, (2)

where 𝜀𝑖 ∈ ℝ is a random error independent from 𝒙𝑖 ,
𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑝)

𝑇 is the parameter vector and 𝜎 is the scale
parameter. Passing on the time scale from Equation (2), we get

𝑇𝑖 = 𝑒𝒙
⊤
𝑖
𝜷𝑒𝜎𝜀𝑖 , 𝑖 = 1, … , 𝑛.

Hence, the survival function of variable 𝑇𝑖 is given by

𝑆𝑖(𝑡) = 𝑃(𝑇𝑖 ≥ 𝑡) = 𝑃(𝑒𝜎𝜀𝑖 ≥ 𝑡𝑒−𝒙⊤
𝑖
𝜷) = 𝑆0(𝑡𝑒

−𝒙⊤
𝑖
𝜷), (3)

where 𝑆0(𝑡) = 𝑃(𝑒𝜎𝜀𝑖 ≥ 𝑡) is the survival function of an individual
for whom 𝒙 = 0. Taking the logarithm of both sides of Equa-
tion (3), multiplying by −1, and differentiating with respect to 𝑡,
we get

ℎ𝑖(𝑡) = −
𝑑 log 𝑆𝑖(𝑡)

𝑑𝑡
= ℎ0(𝑡 e−𝒙⊤

𝑖
𝜷)𝑒−𝒙⊤

𝑖
𝜷 ,

which is the general form of the hazard function for the 𝑖th
individual in an AFT model; see Equation (1). For completeness,
in the following, we give the survival, density, and hazard
functions of the 𝑖th individual under the AFT model in terms of
the random variable 𝜀. These alternative formulations will shortly
be used to write the likelihood. The survival function of the 𝑖th
individual is

𝑆𝑖(𝑡) = 𝑃(𝑇𝑖 ≥ 𝑡) = 𝑃(log 𝑇𝑖 ≥ log 𝑡) = 𝑃

(
𝜀𝑖 ≥ log 𝑡 − 𝒙⊤

𝑖 𝜷

𝜎

)

= 𝑆𝜀𝑖

(
log 𝑡 − 𝒙⊤

𝑖 𝜷

𝜎

)
, (4)

the density function of the 𝑖th individual is

𝑓𝑖(𝑡) = −
𝑑𝑆𝑖(𝑡)

𝑑𝑡
= 1

𝑡𝜎
𝑓𝜀𝑖

(
log 𝑡 − 𝒙⊤

𝑖 𝜷

𝜎

)
, (5)

the hazard function of the 𝑖th individual is

ℎ𝑖(𝑡) =
1

𝑡𝜎
ℎ𝜀𝑖

(
log 𝑡 − 𝒙⊤

𝑖 𝜷

𝜎

)
. (6)

Let denote 𝑌𝑖 = min(log 𝑇𝑖, log 𝐶𝑖). Then, under assumptions
(A1) and (A2), from the expressions in Equations (4–6), we can

express the AFT likelihood function as

𝑛∏
𝑖=1

[
1

𝑡𝑖𝜎
𝑓𝜀𝑖

(
𝑦𝑖 − 𝒙⊤

𝑖 𝜷

𝜎

)]𝛿𝑖[
𝑆𝜀𝑖

(
𝑦𝑖 − 𝒙⊤

𝑖 𝜷

𝜎

)]1−𝛿𝑖

=
𝑛∏

𝑖=1

[
1

𝑡𝑖𝜎
ℎ𝜀𝑖

(
𝑦𝑖 − 𝒙⊤

𝑖 𝜷

𝜎

)]𝛿𝑖

𝑆𝜀𝑖

(
𝑦𝑖 − 𝒙⊤

𝑖 𝜷

𝜎

)
,

and the AFT log-likelihood (a part of the term
∑𝑛

𝑖=1
𝛿𝑖 log 𝑡𝑖) by

𝑙(𝜷⊤, 𝜎) =
𝑛∑

𝑖=1

𝛿𝑖

(
log(𝑓𝜀𝑖

(𝑒𝑖)) − log(𝜎)
)
+ (1 − 𝛿𝑖) log(𝑆𝜀𝑖

(𝑒𝑖)),

(7)
with 𝑒𝑖 =

𝑦𝑖−𝒙⊤
𝑖
𝜷

𝜎
the standardized residuals.

Both 𝜷 and 𝜎 are the unknown parameters we aim to estimate.
Let us denote 𝜽 = (𝜷⊤, 𝜎)⊤. Then, the gradient vector of 𝑙(𝜽) =
𝑙(𝜷⊤, 𝜎) has the following expression:⎧⎪⎪⎨⎪⎪⎩

𝜕𝑙(𝜽)

𝜕𝛽𝑗

= 1

𝜎

𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖𝑗, for 𝑗 = 1, … , 𝑝,

𝜕𝑙(𝜽)

𝜕𝜎
= 1

𝜎

𝑛∑
𝑖=1

(𝑒𝑖𝑎𝑖 − 𝛿𝑖),

(8)

with

𝑎𝑖 = −𝛿𝑖

𝑑 log(𝑓𝜀𝑖
(𝑒𝑖))

𝑑𝑒𝑖
− (1 − 𝛿𝑖)

𝑑 log(𝑆𝜀𝑖
(𝑒𝑖))

𝑑𝑒𝑖

= −𝛿𝑖

𝑑 log(𝑓𝜀𝑖
(𝑒𝑖))

𝑑𝑒𝑖
+ (1 − 𝛿𝑖)ℎ𝜀𝑖

(𝑒𝑖).

The observed information matrix 𝐼(𝜽) = 𝐼(𝜷, 𝜎) has entries⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 𝜕𝑙2(𝜽)

𝜕𝛽𝑗𝜕𝛽𝑘

= 1

𝜎2

𝑛∑
𝑖=1

𝑥𝑖𝑗𝑥𝑖𝑘𝐴𝑖,

− 𝜕𝑙2(𝜽)

𝜕𝛽𝑗𝜕𝜎
= 1

𝜎2

𝑛∑
𝑖=1

𝑥𝑖𝑗𝑒𝑖𝐴𝑖 +
1

𝜎

𝜕𝑙(𝜽)

𝜕𝛽𝑗

,

− 𝜕𝑙2(𝜽)

𝜕2𝜎
= 1

𝜎2

𝑛∑
𝑖=1

(𝑒2𝑖 𝐴𝑖 + 𝛿𝑖) +
2

𝜎

𝜕𝑙(𝜽)

𝜕𝜎
,

with 𝑖, 𝑘 = 1, … , 𝑝 and𝐴𝑖 =
𝑑𝑎𝑖

𝑑𝑒𝑖
= 𝛿𝑖

𝑑2 log(𝑓𝜀𝑖
(𝑒𝑖 ))

𝑑𝑒2
𝑖

+ (1 − 𝛿𝑖)[ℎ𝜀𝑖
(𝑒𝑖) ×

𝑑 log(𝑓𝜀𝑖
(𝑒𝑖 ))

𝑑𝑒𝑖
+ ℎ2

𝜀𝑖
(𝑒𝑖)].

This is a very general framework. We obtain different models
depending on the distribution specified for 𝜀𝑖 in Equations (4–
6). The members of the AFT model class include the exponential
AFT model, Weibull AFT model, log-logistic AFT model, log-
normal AFT model, and gamma AFT model. Here, we consider
the Weibull AFT model presented in the following subsection.

2.1 TheWeibull AFTModel

The Weibull model is obtained when the variables 𝜀𝑖 in Equa-
tion (2) are independently and identically distributed as a
standard Gumbel variable (extreme value variable) with density,
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survival, and hazard functions given by

𝑓𝜀𝑖
(𝑥) = exp (𝑥 − 𝑒𝑥); 𝑆𝜀𝑖

(𝑥) = exp (−𝑒𝑥);

ℎ𝜀𝑖
(𝑥) = 𝑒𝑥; 𝑥 ∈ ℝ. (9)

In this case, it is well known that the variable 𝑇𝑖 = exp(𝒙⊤
𝑖 𝜷 +

𝜎𝜀𝑖), obtained from the log-linear model of Equation (2), is a
Weibull distribution with scale parameter exp(𝒙⊤𝜷) and shape
parameter 1

𝜎
, (i.e., 𝑇 ∼ 𝑊(exp(𝒙⊤𝜷),

1

𝜎
)), the proof is given for

example in Liu (2018). The Weibull distribution is the unique
distribution (along with its special cases, like the exponential
distribution) that satisfies both the PH and AFT assumptions.
Moreover, in this case, we can specialize the general model
given in the previous section since the standardized residual
𝑒𝑖 =

𝑦𝑖 − 𝒙⊤
𝑖
𝜷

𝜎
has density, survival, and hazard functions given

in Equation (9). Hence, substituting log(𝑓𝜀𝑖
(𝑒𝑖)) = 𝑒𝑖 − 𝑒𝑒𝑖 and

log(𝑆𝜀𝑖
(𝑒𝑖)) = −𝑒𝑒𝑖 into Equation (7), we get the log-likelihood

function for the Weibull AFT model

𝓁(𝜽) =
𝑛∑

𝑖=1

𝛿𝑖

(
− log(𝜎) +

𝑦𝑖 − 𝒙⊤
𝑖 𝜷

𝜎

)
− exp

(
𝑦𝑖 − 𝒙⊤

𝑖 𝜷

𝜎

)
(10)

as well as we get the expression of the gradient given in
Equation (8) with parameter 𝑎𝑖 given by

𝑎𝑖 = −

[
𝛿𝑖 − exp

(
𝑦𝑖 − 𝒙⊤

𝑖 𝜷

𝜎

)]
. (11)

More precisely, in the case of the Weibull AFT model, the log-
likelihood gradient vector is given by

⎧⎪⎨⎪⎩
𝜕𝓁(𝜽)

𝜕𝛽𝑗
= 1

𝜎

∑𝑛

𝑖=1
exp
(

𝑦𝑖−𝒙⊤
𝑖
𝜷

𝜎

)
𝑥𝑖𝑗 − 𝛿𝑖𝑥𝑖𝑗, for 𝑗 = 1, … , 𝑝,

𝜕𝓁(𝜽)

𝜕𝜎
= 1

𝜎

∑𝑛

𝑖=1
𝛿𝑖

(
−1 − 𝑦𝑖−𝒙⊤

𝑖
𝜷

𝜎

)
+ exp

(
𝑦𝑖−𝒙⊤

𝑖
𝜷

𝜎

)
𝑦𝑖−𝒙⊤

𝑖
𝜷

𝜎
.

(12)
and the information matrix by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

− 𝜕𝓁2(𝜽)

𝜕𝛽𝑗𝜕𝛽𝑘

= 1

𝜎2

𝑛∑
𝑖=1

𝑥𝑖𝑗𝑥𝑖𝑘 exp(𝑒𝑖),

− 𝜕𝓁2(𝜽)

𝜕𝛽𝑗𝜕𝜎
= 1

𝜎2

𝑛∑
𝑖=1

𝑥𝑖𝑗𝑒𝑖 exp(𝑒𝑖) +
1

𝜎

𝜕𝓁(𝜽)

𝜕𝛽𝑗

,

− 𝜕𝓁2(𝜽)

𝜕2𝜎
= 1

𝜎2

𝑛∑
𝑖=1

(
𝑒2𝑖 exp(𝑒𝑖) + 𝛿𝑖

)
+ 2

𝜎

𝜕𝓁(𝜽)

𝜕𝜎
.

(13)

3 Inference

Given a sample of 𝑛 data satisfying the Weibull AFT model,
we propose to estimate parameters 𝜽 = (𝜷⊤, 𝜎)⊤ ∈ ℝ𝑝 ×ℝ+ using
a penalized MLE. The penalty we impose on the coefficients
has two motivations, which are very important in modern data
analysis, especially for biomarker discovery. The first is the
high dimension of the problems encountered in applications
where often the number of data/individuals (sample size 𝑛) is
smaller than the number of predictors/genes (p ≫ n), so an MLE
estimator is unfeasible without constraints. The second motiva-
tion is that in some applications (especially in genomic cancer

applications), one has prior network-constrained information
that is very important to exploit during the inference process.

Let (𝑌, 𝛿), with 𝑌 = min(log 𝑇, log 𝐶) be the observable random
variables from the censored Weibull AFT model. Given a data
sample of size 𝑛 (𝑦𝑖, 𝛿𝑖, 𝒙𝑖), 𝑖 = 1, … , 𝑛, under Assumptions (A1)
and (A2), Equation (10) represents the log-likelihood function,
with 𝑎𝑖 given in Equation (11).

In these settings, we propose AFTNet as the following penalized
estimator for parameter 𝜽, that is,

𝜽 = argmin
𝜽

− 𝓁(𝜽) + 𝑛𝜆,𝛼(𝜷), (14)

where

𝜆,𝛼(𝜷) = 𝜆[𝛼||𝜷||1 + (1 − 𝛼)Ω(𝜷)], (15)

with 𝜆 > 0 the regularization parameter and 𝛼 ∈ [0, 1] a fixed
parameter, balancing the convex combination of the two penalty
terms. In the penalty in Equation (15), the first term is the classical
𝓁1-norm, that is, LASSO penalty, which forces the individual
parameter estimate sparsity; the second term is a Laplacian
matrix constraint Ω(𝜷) that gives smoothness among connected
variables in a prior knownnetwork. Following C. Li and Li (2010),
Huang et al. (2011), Sun et al. (2014), this prior network is encoded
by a weighted graph  = (𝑉, 𝐸) with vertex set 𝑉 = {1, … , 𝑝}

associated with covariates, edge set 𝐸 = {(𝑗, 𝑘) ∶ (𝑗, 𝑘) ∈ 𝑉 × 𝑉}

and zero diagonal adjacency matrix 𝐀 ∈ ℝ𝑝×𝑝. Defining the
degreematrix𝐃 ∈ ℝ𝑝×𝑝 as a diagonalmatrix with 𝑑𝑗 =

∑𝑝

𝑖=1
|𝑎𝑖𝑗|,

we have 𝑳 = 𝑫 − 𝑨 ∈ ℝ𝑝×𝑝, so that the Laplacian constraint is

Ω(𝜷) = 𝜷𝑇𝑳𝜷 = 𝜷
𝑇
(𝐃 −𝐀)𝜷 =

∑
1≤𝑗<𝑘≤𝑝

|𝑎𝑗𝑘|(𝛽𝑗 − 𝑠𝑗𝑘𝛽𝑘

)2
, (16)

where 𝑠𝑗𝑘 = sign(𝑎𝑗𝑘). The edge (𝑗, 𝑘) weighted by 𝑎𝑗𝑘 is labeled
with a “+” or “−” sign to accommodate the case where two
predictors can have a nonzero adjacent coefficient but are neg-
atively correlated. Note that 𝐋 is positive semidefinite since it
is symmetric and diagonally dominant. The Laplacian matrix
constraint, Ω(𝜷), nearly sets all of the connected coefficients in
the network to zero or nonzero values.

We stress that in Equation (15), we assume that the Laplacian
matrix 𝑳 is known and available from the literature, the regular-
ization parameter 𝜆 > 0 can be estimated using some data-driven
model selection procedure, the parameter 𝛼 ∈ [0, 1] is fixed and
it is chosen by the user to balance the two penalties.

We provide theoretical properties of the AFTNet estimator in
Section 3.1. A numerical solution to a problem in Equation (14)
is presented in Section 4.

3.1 Theoretical Properties

We can not write a closed-form expression for the solution to
problem (14) using the Karush–Kuhn–Tucker conditions since
the log-likelihood𝓁(𝜽) is convex for variable 𝜷 andnot for variable
𝜎. For this reason, it is not possible to extend asymptotic results
for Cox given in Sun et al. (2014). Hence, we resort to the finite
sample approach proposed in Loh and Wainwright (2015), which
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establishes error bounds when both the loss and penalty are
allowed to be non-convex, provided that the loss function satisfies
a form of restricted strong convexity and the penalty satisfies
suitable mild conditions.

Let us consider the likelihood in Equation (14), 𝓁(𝜽) =
∑𝑛

𝑖=1
𝓁𝑖(𝜽)

with

𝓁𝑖(𝜽) = 𝛿𝑖

(
− log(𝜎) +

𝑦𝑖 − 𝒙𝑇
𝑖 𝜷

𝜎

)
− exp

(
𝑦𝑖 − 𝒙𝑇

𝑖 𝜷

𝜎

)
;

and let us define 𝓁(𝑛)(𝜽) = − 1

𝑛
𝓁(𝜽). We have the following

gradient vector and Hessian matrix:

∙ ∇𝓁(𝜽) =
∑𝑛

𝑖=1
∇𝓁𝑖(𝜽𝑖), where ∇𝓁𝑖(𝜽) ∈ ℝ𝑝+1, by Equa-

tion (12), is

∇𝓁𝑖(𝜽𝒋) =
⎧⎪⎨⎪⎩

1

𝜎
exp
(

𝑦𝑖−𝒙𝑇
𝑖
𝜷

𝜎

)
𝑥𝑖𝑗 − 𝛿𝑖 𝑥𝑖𝑗, 𝑗 = 1, … , 𝑝,

1

𝜎
𝛿𝑖

(
−1 − 𝑦𝑖−𝒙𝑇

𝑖
𝜷

𝜎

)
+ exp

(
𝑦𝑖−𝒙𝑇

𝑖
𝜷

𝜎

)
𝑦𝑖−𝒙𝑇

𝑖
𝜷

𝜎
,

(17)

∙ ∇2𝓁(𝜽) =
∑𝑛

𝑖=1
∇2𝓁𝑖(𝜽), where ∇2𝓁𝑖(𝜽) ∈ ℝ𝑝+1 ×ℝ𝑝+1, by

Equation (13), is

[
∇2𝓁𝑖(𝜽)

]
𝑗𝑘

= −

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

𝜎2
𝑥𝑖𝑗𝑥𝑖𝑘 exp(𝑒𝑖), 𝑗, 𝑘 = 1, … , 𝑝,

1

𝜎2
𝑥𝑖𝑗𝑒𝑖 exp(𝑒𝑖) +

1

𝜎

𝜕𝓁𝑖

𝜕𝛽𝑗
, 𝑗 = 1, … , 𝑝;

𝑘 = 𝑝 + 1,

1

𝜎2
(𝑒2𝑖 exp(𝑒𝑖) + 𝛿𝑖) +

2

𝜎

𝜕𝓁𝑖

𝜕𝜎
, 𝑗 = 𝑘 = 𝑝 + 1.

Inspired by the work of Reeder, Lu, andHaneuse (2023), wemake
the following assumptions:

Assumption 3.1 (Bounded data).

(i) ∃𝜏𝑦 : |𝑌𝑖| ≤ 𝜏𝑦 , for all 𝑖 = 1, … , 𝑛,

(ii) ∃𝜏𝑥: ‖𝑥𝑖𝑗‖ < 𝜏𝑥 ∀𝑖, 𝑗.

Assumption 3.2 (Bounded true parameter). Let 𝜽∗ =
(𝜷∗𝑇, 𝜎∗)𝑇 ∈ ℝ𝑝 ×ℝ+ be the true parameter vector, that is,

𝜽∗ = argmin
𝜽

𝔼𝑋𝑌[𝓁
(𝑛)(𝜽)], 𝔼𝑋𝑌[∇𝓁(𝑛)(𝜽∗)] = 0,

𝔼𝑋𝑌[∇
2𝓁(𝑛)(𝜽∗)] ≻ 0,

then ∃𝑅 and s ≪ p, such that

‖𝜽∗‖1 ≤ 𝑅; ‖𝜷∗‖0 = 𝑠 = |||{𝑗 ∶ 𝛽∗
𝑗 ≠ 0}

|||; 𝜎∗
> 0. (18)

Assumption 3.3 (Bounded minimum eigenvalue popula-
tion Hessian).

∃𝛾 > 0 ∶ min
𝜽∶‖𝜽−𝜽∗‖2≤2𝑅

𝜆𝑚𝑖𝑛

(
𝔼[∇2𝓁(𝑛)(𝜽)]

) ≥ 𝛾,

with 𝜆𝑚𝑖𝑛(𝐴) being the minimum eigenvalue of matrix 𝐴.

Since matrix 𝑳 ⪰ 0, the solution 𝜽 of the minimization problem
in Equations (14) and (15) satisfies

𝜽 = argmin
𝜽∈ℝ𝑝×ℝ+ ,‖𝜽‖1≤𝑅

− 𝓁(𝜽) + 𝑛𝜆𝛼‖𝜷‖1 + 𝑛𝜆(1 − 𝛼)‖𝑳 1

2 𝜷‖22
= argmin

𝜽∈ℝ𝑝×ℝ+ , ‖𝜽‖1≤𝑅

− 1

𝑛
𝓁(𝜽) + 𝜆𝛼‖𝜷‖1 + 𝜆(1 − 𝛼)‖𝑳 1

2 𝜷‖22
= argmin

𝜽∈ℝ𝑝×ℝ+ , ‖𝜽‖1≤𝑅

𝓁(𝑛)(𝜽) + 𝜆𝛼‖𝜷‖1 + 𝜆(1 − 𝛼)‖𝑳 1

2 𝜷‖22,
Here, we include the side condition ‖𝜽‖1 ≤ 𝑅 to guarantee the
existence of at least one local/global optima.

In the following, we state the main result.

Theorem 3.1. Under Assumptions 3.1–3.3 for all 𝜽 local
minimizers that satisfy the first-order condition

⟨∇𝓁(𝑛)(𝜽) +∇𝜆,𝛼(𝜽), 𝜽 − 𝜽⟩ ≥ 0, ∀𝜽 ∶ ‖𝜽‖1 ≤ 𝑅,

it holds

‖𝜽 − 𝜽∗‖2 ≤ 3

2
𝜆𝛼
√

𝑠 + 1 + 2𝜆(1 − 𝛼)𝑅𝜆𝑚𝑎𝑥(𝑳)

𝛾

with high probability.

The proofs of Theorem 3.1 and associated lemmas are given in the
Appendix.

Remark 3.2. In high-dimensional statistics, beyond consistency
in 𝐿2 norm (as proved in Theorem 3.1), one should also consider
consistency in terms of variable selection and the asymptotic
normality of the estimator restricted to the support of the true
vector 𝛽∗. Regarding variable selection and asymptotic normality,
there are some results in the Cox and frailty models which use
separable penalties like LASSO, SCAD, or MCP (see Fan and
Li 2002, Huang et al. 2013, and D. Wang, Wu, and Zhao 2019).
There are also results concerning the linearmodel with the sparse
network penalty (see C. Li and Li 2010 andHuang et al. 2011). The
first result on the consistency of the sparse Laplacian shrinkage
estimator for the Cox model, both in terms of empirical risk for
the coefficients and sparsity, was given by Sun et al. (2014). In the
context of network-penalized MLE estimators for AFT models,
to the best of the authors’ knowledge, this is the first result of
𝐿2 consistency.

4 Numerical Implementation

We propose a two-step procedure to numerically solve Equa-
tion (14) in AFTNet. In the first step, we estimate 𝜎̂ using the
survreg function in the R package survival, that is, regressing
𝑌 only on the intercept. In the second step, we plug this estimate
into Equation (14) and solve the following:

argmin
𝜷∈ℝ𝑝

− 1

𝑛
𝓁(𝜷) + 𝜆𝛼

𝑝∑
𝑖=1

|𝛽𝑖| + 𝜆(1 − 𝛼)𝜷𝑇𝐋𝜷. (19)

Weuse a proximal gradient technique to obtain the corresponding
stationary point of Equation (19). In the following, we give a
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brief description of this technique. Then, we specialize it for our
problem. The proximal gradient technique is an iterative method
that solves the composite model (Parikh and Boyd 2014)

min
𝜷∈ℝ𝑝

𝑓(𝜷) + 𝑔(𝜷),

under the following assumptions (Beck 2017, chapters 2 and 10):

i. 𝑓 is proper, closed, differentiable, with the Lipschitz-
continuous gradient, with convex domain;

ii. 𝑔 is a proper, closed, and convex function.

At each iteration 𝑘, we linearize the function 𝑓(𝜷) around the
current point and solve the problem

min
𝜷∈ℝ𝑝

𝑓
(
𝜷𝒌
)
+∇𝑓

(
𝜷𝒌
)𝑇(

𝜷 − 𝜷𝒌
)
+ 𝑔(𝜷) + 𝑀

2
‖𝜷 − 𝜷𝒌‖22.

The last term is the proximal term whose function is to keep the
update in a neighborhood of the current iterate 𝜷𝒌, where 𝑓 (𝜷) is
close to its linear approximation. The constant 𝑀 > 0 is the step
parameter, an upper bound of the Lipschitz constant of the ∇𝑓.
We can rewrite the problem as

min
𝜷∈ℝ𝑝

1

2

‖‖‖‖‖𝜷 −
(
𝜷𝑘 − 1

𝑀
∇𝑓
(
𝜷𝑘
))‖‖‖‖‖

2

2

+ 1

𝑀
𝑔(𝜷)

whose solution is

𝜷𝑘+1 = Prox 1

𝑀
𝑔(𝜷)

(
𝜷𝑘 − 1

𝑀
∇𝑓
(
𝜷𝑘
))

,

where Prox 1

𝑀
𝑔(𝜷)

() denotes the proximal operator associated with

the 1

𝑀
𝑔() function.

We can now specify such a technique for our case, defining

𝑓(𝜷) = − 1

𝑛
𝓁(𝜷) + 𝜆(1 − 𝛼)𝜷𝑇𝐋𝜷 = − 1

𝑛
𝓁(𝜷) + 𝜆(1 − 𝛼)

‖‖‖‖𝐋1

2 𝜷
‖‖‖‖
2

2

,

and

𝑔(𝜷) = 𝜆𝛼

𝑝∑
𝑖=1

|𝛽𝑖| = 𝜆𝛼‖𝜷‖1.
We recall that the proximal operator of the LASSO penalty 𝑔 (𝜷)

is the soft thresholding. Hence, we have

𝜷𝑘+1 = SOFT

(
𝜷𝑘 − 1

𝑀
∇𝑓
(
𝜷𝑘
)
,
𝜆𝛼

𝑀

)
,

which is applied component-wise, that is,

𝛽𝑘+1
𝑗 = SOFT

(
𝑢𝑗,

𝜆𝛼

𝑀

)
=
⎧⎪⎨⎪⎩
𝑢𝑗 −

𝜆𝛼

𝑀
, if 𝑢𝑗 >

𝜆𝛼

𝑀

0, if − 𝜆𝛼

𝑀
≤ 𝑢𝑗 ≤ 𝜆𝛼

𝑀

𝑢𝑗 +
𝜆𝛼

𝑀
, if 𝑢𝑗 < − 𝜆𝛼

𝑀

with

𝑢𝑗 = 𝛽𝑘
𝑗 −

1

𝑀

(
∇𝓁
(
𝜷𝑘
))

𝑗
− 2𝜆(1 − 𝛼)

𝑀

(
𝐋𝜷𝑘
)
𝑗
,

for 𝑗 = 1, … , 𝑝.

We summarize in Algorithm 1 the numerical procedure proposed
in AFTNet.a0~

ALGORITHM 1 Proximal gradient algorithm for solving (19).

Require: 𝜆 > 0, 𝛼 ∈ [0, 1]

Input: 𝒚, 𝑿, 𝜹 , 𝜎̂, 𝐋
Initialize 𝑘 ← 0

Initialize 𝜷(𝑘)

Initialize𝑀 > 0

while convergence not satisfied do
Backtracking line search for the step parameter𝑀
evaluate ∇𝓁

(
𝜷𝑘
)
by Equation (12) first formula

𝒖 ← 𝜷𝑘 − 1

𝑀

(
∇𝓁
(
𝜷𝑘
))

− 2𝜆(1−𝛼)

𝑀

(
𝐋𝜷𝑘
)

𝜷𝑘+1 ← SOFT
(
𝒖,

𝜆𝛼

𝑀

)
Check convergence
𝑘 ← 𝑘 + 1

end while

InAlgorithm 1, theBacktracking line search for the step parameter
𝑀 is implemented as in Beck (2017). The Check convergence stops
the algorithm when a maximum number of iterations has been
reached, or the relative error norm between the estimates at two
consecutive iterations is less than a given tolerance. Furthermore,
Algorithm 1 assumes that the regularization parameter 𝜆 is
known. In practice, we need to choose the regularization param-
eters by some data-driven selection procedure; in the following
subsection, we describe our choice.

We implemented the proposed algorithm in the R package AFT-
Net and a set of auxiliary functions for fitting, cross-validation,
prediction, and visualization. The source code to the AFTNet
package and to data and codes to reproduce the simulations and
real data analyses is available as the Supporting Information.

4.1 Construction of Adjacency Matrix

In general, the adjacency matrix is known up to signs, so it is
necessary to implement a method for estimating 𝑠𝑗𝑘 = sign(𝑎𝑗𝑘)

(see Equation 16). We suggest the following two proposals:

∙ 𝑠𝑗𝑘 = sign(corr(𝐱.,𝑗 , 𝐱.,𝑘)), where corr is the Pearson correla-
tion (see Huang et al. 2011).

∙ 𝑠𝑗𝑘 = sign(𝛽𝑗)sign(𝛽𝑘), where 𝜷̃ is given by a ridge estimate of
the Weilbul AFT model (see Sun et al. 2014).

4.2 𝝀 Parameter Selection

In our AFTNet implementation, we extend the CV-PL (Dai
and Breheny 2024) to the Weibull AFT penalized model. More
precisely, after dividing the training data into 𝐾 nonoverlapping
folds, for each 𝑘 = 1, … , 𝐾, we use the 𝑘th fold 𝐷𝑘 as the test set,
and the 𝐾 − 1 remaining folds 𝑇𝑘 as the training set. We obtain
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TABLE 1 Simulation studies’ dimensions: Weak and strong high
dimensionality effects are tested in separate evaluations using both
not-overlapping and overlapping cases. 𝑝 is the number of potential
explanatory variables (i.e., genes). 𝑛𝑇 and 𝑛𝐷 are the number of
observations in the training set 𝑇 and testing set 𝐷, respectively.

Effect

Number of genes Training set Testing set
𝒑 𝒏𝑻 𝒏𝑫

Weak 220 110 55
Strong 1100 275 138

𝜷
(−𝑘)

𝜆
from 𝑇𝑘 . Then, we evaluate the standardized residuals

𝑒𝐶𝑉
𝑖,𝜆

=
𝑦𝑖 − 𝒙⊤

𝑖 𝜷
(−𝑘)

𝜆

𝜎̂
, ∀𝑖 ∈ 𝐷𝑘.

Hence, after repeating this for all K folds, we combine all
standardized residuals 𝑒𝐶𝑉

𝑖,𝜆
𝑖 = 1, … , 𝑛. We plug in 𝑒𝐶𝑉

𝑖,𝜆
into the

negative log-likelihood in Equation (10) and define 𝐶𝑉(𝜆) as

𝐶𝑉(𝜆) = −
𝑛∑

𝑖=1

𝛿𝑖

(
− log (𝜎̂) + 𝑒𝐶𝑉

𝑖,𝜆

)
− exp

(
𝑒𝐶𝑉
𝑖,𝜆

)
.

We evaluate 𝐶𝑉(𝜆) at each value of 𝜆 belonging to a predeter-
mined grid of values within the interval [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] and select the
one for which 𝐶𝑉(𝜆) is the minimum.

5 Simulation Results

To demonstrate the performance of AFTNet, we perform vari-
ous numerical experiments on synthetic datasets and compare
AFTNet with the elastic net regularized Gehan estimator under
the AFT model described in Suder and Molstad (2022). In each
synthetic dataset, we split 𝑛 observations into 𝑛𝑇 observations
assigned to the training set and 𝑛𝐷 observations to the test set,
with 𝑛 = 𝑛𝑇 + 𝑛𝐷 . The latter serves to evaluate the prediction per-
formance.We consider scenarios that are likely to be encountered
in genomic studies for biomarkers discovery, that is, the number
of genes/variables 𝑝 >> 𝑛𝑇 and availability of prior information
about the regulatory networks among genes encoded by a known
adjacency matrix 𝐀. In all our experiments, the network consists
of 𝑟 regulatory modules. Similarly to Sun et al. (2014), each 𝑖th
module, 𝑖 = 1, … , 𝑟, models one transcription factor (TF) that
regulates a given number of genes 𝑝𝑖 , such that the overall
number of genes is 𝑝 =

∑𝑟

𝑖=1
(𝑝𝑖 + 1). We define the adjacency

matrix 𝐀 as a binary matrix of dimension 𝑝 × 𝑝, with 𝑎𝑖𝑗 = 1

between the TFs and their regulated genes, and 𝑎𝑖𝑗 = 0 otherwise.
We consider two cases 𝑟 = 20 and 𝑟 = 100 according to Table 1,
where 𝑝∕𝑛𝑇 = 2 represents a weak effect of high dimensionality
and 𝑝∕𝑛𝑇 = 4 represents a strong effect of high dimensionality.

We consider two topological settings:

∙ Not-overlapping regulatorymodules: The 𝑟 regulatorymodules
are disjoint from each other. In each module, the TF regulates
10 genes. For each sample 𝑖, 𝑖 = 1, … , 𝑛, the 𝑖th row of the
matrix 𝐗 is given by the expression values of the 𝑝 genes

generated according to the following scheme: the expression
value of each 𝑇𝐹𝑗 , 𝑗 = 1, … , 𝑟, is sampled from a standard
normal distribution. The expression values of the 10 regulated
genes are sampled from a conditional normal distribution
with correlation 𝜌 between their expressions and that of the
corresponding 𝑇𝐹. For each module, we randomly select 𝑣

genes to have a positive correlation 𝜌 = 0.7 and the remaining
10 − 𝑣 genes to have a negative correlation 𝜌 = −0.7, mimick-
ing the activation or repression of each gene under the effect
of its corresponding 𝑇𝐹.

∙ Overlapping regulatory modules: The first four regulatory
modules overlap. In particular, the first two regulatory mod-
ules share 10 common genes (i.e., jointly regulated by 𝑇𝐹1 and
𝑇𝐹2), five genes are specific to the first regulatory module,
and five genes are specific to the second regulatory module.
Therefore, the first two regulatory modules contain 20 genes
and two TFs. The third and fourth regulatory modules have
six common genes (i.e., jointly regulated by 𝑇𝐹3 and 𝑇𝐹4),
seven genes are specific to the third regulatory module, and
seven are specific to the fourth module. Therefore, together,
they are composed of 20 genes and two TFs. The remaining
𝑟 − 4 regulatory modules do not overlap and the TF regulates
10 genes in each module, as in the not-overlapping case.
This scenario mimics cases where some genes can belong to
different pathways regulating different biological processes,
as often observed in cancer. In this second setting, for each
sample 𝑖, 𝑖 = 1, … , 𝑛, the 𝑖th row of the matrix 𝐗 is given
by the expression values of the 𝑝 genes generated according
to the following scheme: the expression value of each 𝑇𝐹𝑗 ,
𝑗 = 1, … , 𝑟, is sampled from a standard normal distribution,
the expression values of the module-specific regulated genes
are sampled from a conditional normal distribution with
correlation 𝜌 between their expressions and that of the
corresponding TF. In contrast, the expression values of the
common regulated genes are sampled from a conditional nor-
mal distribution with correlation 𝜌 between their expressions
and that of the average of the two corresponding TFs. For both
module-specific and common genes, we randomly select 𝑣

genes to have a positive correlation 𝜌 = 0.7 and the remaining
genes to have a negative correlation 𝜌 = −0.7, mimicking the
activation or repression of each gene under the effect of its
corresponding 𝑇𝐹.

In both dimensional cases, weak and strong, and topological
settings, not-overlapping and overlapping, we consider 𝑝𝑎𝑐𝑡𝑖𝑣𝑒 =
88 active genes, choosing the true parameter vector 𝜷∗ ∈ ℝ𝑝

with the last 𝑝 − 88 components equal to 0, and the coeffi-
cients 𝛽∗

𝑗 , 𝑗 = 1, … , 44 are generated from the uniform distri-
bution  (0.1, 0.5), while 𝛽∗

𝑗 , 𝑗 = 45, … , 88 are generated from
 (−0.5,−0.1). In each dimensional case and setting, we generate
times, 𝑇𝑖 , 𝑖 = 1, … , 𝑛, sampling from a Weibull distribution with
a shape parameter equal to 1∕𝜎 and scale parameter equal
to exp(𝒙𝑇

𝒊
𝜷∗), with 𝒙𝑇

𝒊
being the 𝑖th row of matrix 𝑿. We

log-transform the times and consider moderate, medium, and
high censoring rate (CR) scenarios with 30%, 50%, 80% CR,
respectively.

We consider three values for the scale parameter 𝜎: 𝜎 = 0.5

corresponding to increasing hazard, 𝜎 = 1 corresponding to
an exponential distribution with constant hazard, and 𝜎 = 1.5

corresponding to decreasing hazard.
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TABLE 2 Not-overlapping case. Performance metrics with 𝑛𝑇 = 110, 𝑛𝐷 = 55, 𝑝 = 220, and 𝛼 = 0.5 (weak effect) averaged over 100 independent
replications. From top to bottom, results correspond to 30%, 50%, and 80% CR scenarios, respectively.

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 30% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.609 2.802 2.810 2.915 2.927 2.966
PMSE 0.657 0.842 0.790 0.924 0.880 0.965
FNR 0.187 0.644 0.400 0.828 0.539 0.902
FPR 0.690 0.167 0.478 0.088 0.380 0.062
NSR 0.739 0.243 0.526 0.122 0.413 0.076

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 50% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.623 2.818 2.796 2.938 2.925 2.982
PMSE 0.666 0.846 0.786 0.935 0.879 0.968
FNR 0.159 0.668 0.394 0.854 0.523 0,911
FPR 0.716 0.167 0.485 0.086 0.388 0.060
NSR 0.766 0.233 0.534 0.110 0.424 0.072

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 80% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.565 2.901 2.800 2.959 2.913 2.996
PMSE 0.646 0.909 0.803 0.948 0.884 0.978
FNR 0.129 0.808 0.370 0.878 0.500 0.918
FPR 0.769 0.109 0.522 0.084 0.419 0.068
NSR 0.810 0.142 0.565 0.099 0.451 0.074

We use AFTNet as described in Section 4. In particular, in
Algorithm 1, we initialize 𝜷(0) = 𝟎, we fix 𝛼 = 0.5 and 𝑀 is the
largest eigenvalue of the likelihood Hessian matrix evaluated
at (𝜷(0), 𝜎̂). We select the optimal parameter 𝜆𝑜𝑝𝑡 ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥]

by the CV-LP approach illustrated in Subsection 4.2 with 𝐾 = 5

folds, 𝜆𝑚𝑎𝑥 = ‖‖‖∇𝓁
(
𝜷(0), 𝜎̂

)‖‖‖∞ ∕𝛼 and 𝜆𝑚𝑖𝑛 = 0.01 ⋅ 𝜆𝑚𝑎𝑥 . For the
𝜆’s grid, we consider 50 equispaced points 𝜁𝑖 in the interval
[log 10(𝜆𝑚𝑖𝑛), log 10(𝜆𝑚𝑎𝑥)] and take 𝜆𝑖 = 10𝜁𝑖 .

For what concerns the implementation of the regularized
Gehan estimator, we use the penAFT package with the
following choice penalty = “EN,” which stands for an
elastic-net penalty, with 𝛼 = 0.5, 𝑛𝑙𝑎𝑚𝑏𝑑𝑎 = 50 different
values of regularization parameter and 𝑙𝑎𝑚𝑏𝑑𝑎.𝑟𝑎𝑡𝑖𝑜.𝑚𝑖𝑛 =
0.01.

To compare performance of the different approaches, we use the
following indicators:

– the estimated mean square error (EMSE):

𝐸𝑀𝑆𝐸 = ‖‖‖𝜷∗ − 𝜷
‖‖‖2,

– the predictive mean square error (PMSE):

𝑃𝑀𝑆𝐸 = ‖‖‖𝑿𝑇
𝐷 𝜷∗ − 𝑿𝑇

𝐷 𝜷
‖‖‖22∕𝑛𝐷,

– the false negative rate (FNR):

𝐹𝑁𝑅 =
𝑝∑

𝑗=1

𝐼
[
𝜷𝑗 = 0 ∧ 𝜷∗

𝑗 ≠ 0
]
∕𝑝𝑎𝑐𝑡𝑖𝑣𝑒,

which is the relative number of not detected genes,

– the false positive rate (FPR):

𝐹𝑃𝑅 =
𝑝∑

𝑗=1

𝐼
[
𝜷𝑗 ≠ 0 ∧ 𝜷∗

𝑗 = 0
]
∕(𝑝 − 𝑝𝑎𝑐𝑡𝑖𝑣𝑒),

which is the relative number of (falsely) detected genes,

– the number of selected variables rate (NSR):

𝑁𝑆𝑅 =
𝑝∑

𝑗=1

𝐼
[
𝜷𝑗 ≠ 0

]
∕𝑝,

where 𝜷 denotes the estimated vector coefficients obtained by
AFTnet or by penAFT package.

In the following, we show the average of the above indicators over
100 independent simulations.

Results for the not-overlapping case. We report simulation results
for both models in Tables 2 and 3 for the weak and strong
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TABLE 3 Not-overlapping case. Performancemetricswith 𝑛𝑇 = 275, 𝑛𝐷 = 138,𝑝 = 1100, and𝛼 = 0.5 (strong effect) averaged over 100 independent
replications. From top to bottom, results correspond to 30%, 50%, and 80% CR scenarios, respectively.

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 30% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.701 2.838 2.837 2.962 2.944 3.005
PMSE 0.580 0.678 0.658 0.754 0.730 0.783
FNR 0.145 0.588 0.335 0.851 0.516 0.940
FPR 0.544 0.067 0.346 0.027 0.277 0.017
NSR 0.569 0.095 0.372 0.037 0.293 0.021

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 50% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.750 2.875 2.869 2.985 2.955 3.014
PMSE 0.608 0.698 0.679 0.771 0.734 0.790
FNR 0.125 0.668 0.366 0.895 0.545 0.957
FPR 0.594 0.066 0.339 0.025 0.264 0.013
NSR 0.616 0.087 0.363 0.032 0.279 0.016

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 80% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.715 2.949 2.873 3.015 2.962 3.039
PMSE 0.585 0.744 0.674 0.783 0.729 0.795
FNR 0.086 0.806 0.305 0.924 0.518 0.948
FPR 0.705 0.055 0.401 0.036 0.282 0.031
NSR 0.721 0.066 0.424 0.040 0.298 0.032

dimensional cases, respectively. Across all the considered topo-
logical settings and associated choices of 𝜎 (i.e., 𝜎 = 0.5, 1, 1.5),
AFTNet outperforms penAFT in both the weak and strong effects
in terms of EMSE, PMSE, and FNR. In contrast, penAFT tends to
select fewer genes, resulting in a lower FPR. We note that both
procedures AFTNet and penAFT are robust with respect to the
CR scenarios.

Figures 1 and 2 provide analogous results using box plots. Here,
a greater variability is visible in AFTNet for FNR and FPR
indicators. Moreover, to assess the validity of our method, we plot
the receiver operating characteristic (ROC) curve (for 𝜎 = 1 and
𝐶𝑅 = 30%) in Figure 3. The figure shows that AFTnet performs
better than penAFT in weak and strong dimensional scenarios.

Finally, the average running time of AFTNet for obtaining a
single solution path over 100 independent replications, for 𝜎 =
0.5, 1, 1.5, and CR = 30% (50%; 80%), in the simulation settings
with (𝑛, 𝑝) = (165, 220) is about 5.11, 7.52, 4.95 s, respectively,
whereas, with (𝑛, 𝑝) = (413, 1100), is about 306.274, 195.753,
195.732 s, respectively. In the first case, the running time of
AFTNet is slightly above the average running time for the
penAFT; in the second one, it is larger. However, the comparison
is only partially fair since penAFT implementation uses C++
functions to speed up the running time.

Results for the overlapping case. The simulation results for both
methods are shown in Tables 4 and 5 for the weak and strong
dimensional cases, respectively. Also, in this case, AFTNet
performs better than penAFT in terms of EMSE, PMSE, and
FNR when a weak or strong dimensional scenario is simulated.
Instead, penAFT tends to detect fewer genes with lower FPR. We
note that both procedures AFTNet and penAFT are robust with
respect to the CR.

A visual summary of the metrics can be also found in Figures 4
and 5.Moreover, to assess the validity of ourmethod, we show the
ROC curve in Figure 6 where we can see that AFTnet performs
better than penAFT in both weak and strong effects when 𝜎 = 1

and 𝐶𝑅 = 30%.

Finally, similar to the previous results, the average running
time of AFTNet for obtaining a single solution path over 100
independent replications increases compared to penAFT.

6 Real Case Studies

In this section,we consider two examples of biomarkers discovery
related to gene expression data of different types of cancer: breast
and kidney.
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FIGURE 1 Not-overlapping case. Box plots of the performance metrics results between AFTNet and penAFT with 𝑛𝑇 = 110, 𝑛𝐷 = 55, 𝑝 = 220

(weak effect) and 𝛼 = 0.5 for 𝜎 = 0.5, 1, 1.5 (from the left side to the right side), respectively, averaged over 100 independent replications. From top to
bottom, results correspond to (a) 30%, (b) 50%, and (c) 80% CR scenarios, respectively.

∙ Breast cancer data (BC): We consider two independent gene
expression datasets available from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/).We use GSE2034 as the training
set and GSE2990 as the test set and select 13,229 genes
common to both datasets. The first dataset contains 𝑛𝑇 =
286 records of lymph-node-negative breast cancer patients.
The second one contains 𝑛𝐷 = 189 records of invasive breast

carcinoma patients. The median survival time in the training
dataset is 86 months with a censoring proportion of 62.59%,
while in the test set, it is 77 months with a censoring
proportion equal to 64.17%.

∙ Kidney cancer data (TCGA-KIRC): We consider the
TCGA-KIRC (Kidney Renal Clear Cell Carcinoma) gene
expression dataset available in the GDC Data Portal

10 of 21 Biometrical Journal, 2024
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FIGURE 2 Not-overlapping case. Box plots of the performance metrics results between AFTNet and penAFT with 𝑛𝑇 = 275, 𝑛𝐷 = 138, 𝑝 = 1100

(strong effect) and 𝛼 = 0.5 for 𝜎 = 0.5, 1, 1.5 (from the left side to the right side), respectively, averaged over 100 independent replications. From top to
bottom, results correspond to (a) 30%, (b) 50%, and (c) 80% CR scenarios, respectively.

(https://portal.gdc.cancer.gov). The data were obtained from
the Illumina HiSeq platform, consisting of 518 kidney cancer
patients and 20,159 genes. We download the preprocessed and
normalized data (gene-level, RPKM) from the LinkedOmics
portal (http://linkedomics.org/login.php). The median
survival time is 1252 days with a censoring proportion of
66.60%. The data were randomly split into training 𝑇 and

test set 𝐷 using a resampling method, which provides more
accurate estimates of predictive accuracy (see, for instance,
Simon et al. 2011, Iuliano et al. 2016).

As a preprocessing step, we first apply a screening proce-
dure to reduce the dimension of the problem, selecting 𝑝 =
488 genes for the datasets of BC and 𝑝 = 521 genes for the
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FIGURE 3 Not-overlapping case. The ROC curve for 𝜎 = 1 and 𝐶𝑅 = 30%with a weak effect (on the left side) and a strong effect (on the right side).

TABLE 4 Overlapping case. Performance metrics with 𝑛𝑇 = 110, 𝑛𝐷 = 55, 𝑝 = 220 and 𝛼 = 0.5 (weak effect) averaged over 100 independent
replications and a 30%, 50%, and 80% CR.

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 30% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.659 2.838 2.846 2.963 2.929 2.997
PMSE 0.614 0.764 0.735 0.859 0.801 0.889
FNR 0.218 0.661 0.468 0.867 0.589 0.935
FPR 0.631 0.155 0.403 0.067 0.325 0.034
NSR 0.692 0.228 0.455 0.093 0.359 0.047

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 50% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.690 2.874 2.856 2.971 2.928 3.003
PMSE 0.624 0.787 0.731 0.867 0.791 0.889
FNR 0.234 0.715 0.480 0.888 0.584 0.926
FPR 0.618 0.136 0.386 0.063 0.321 0.046
NSR 0.677 0.196 0.440 0.083 0.359 0.057

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 80% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.608 2.941 2.845 2.990 2.936 3.029
PMSE 0.570 0.843 0.716 0.874 0.779 0.894
FNR 0.158 0.823 0.451 0.878 0.589 0.893
FPR 0.722 0.102 0.422 0.086 0.317 0.083
NSR 0.770 0.132 0.473 0.100 0.354 0.093

TCGA-KIRC dataset, respectively. The screening process is based
on a combination of biomedical-driven (BMD) information and
data-driven (DAD) knowledge (see, for instance, Iuliano et al.
2018). In particular, we perform this processing step using the R

package COSMONET (Iuliano et al. 2021). Subsequently, we conduct
inference by running AFTNet and penAFT according to the two
real settings investigated (BC and TCGA-KIRC). To construct the
prior network information, we map the screened genes from the
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TABLE 5 Overlapping case. Performance metrics with 𝑛𝑇 = 275, 𝑛𝐷 = 138, 𝑝 = 1100, and 𝛼 = 0.5 (strong effect) averaged over 100 independent
replications and a 30%, 50%, and 80% CR.

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 30% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.755 2.868 2.880 2.975 2.953 3.006
PMSE 0.549 0.628 0.620 0.691 0.665 0.712
FNR 0.208 0.641 0.427 0.881 0.568 0.949
FPR 0.458 0.058 0.300 0.022 0.241 0.012
NSR 0.485 0.082 0.322 0.030 0.257 0.015

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 50% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.765 2.895 2.881 2.993 2.955 3.015
PMSE 0.554 0.643 0.626 0.702 0.673 0.715
FNR 0.225 0.703 0.468 0.921 0.627 0.964
FPR 0.441 0.060 0.246 0.020 0.191 0.013
NSR 0.467 0.079 0.269 0.025 0.205 0.014

𝝈 = 𝟎.𝟓 𝝈 = 𝟏 𝝈 = 𝟏.𝟓

CR = 80% AFTNet penAFT AFTNet penAFT AFTNet penAFT

EMSE 2.728 2.962 2.882 3.012 2.959 3.027
PMSE 0.533 0.679 0.622 0.710 0.667 0.719
FNR 0.139 0.837 0.413 0.940 0.593 0.965
FPR 0.616 0.046 0.320 0.025 0.226 0.018
NSR 0.635 0.056 0.342 0.028 0.240 0.019

KEGG repository (https://www.genome.jp/kegg/pathway.html)
and build a gene adjacency matrix (see Iuliano et al. 2021 for
details). The sign of the adjacency matrix is chosen as 𝑠𝑖𝑗 =
sign(corr(𝐱.𝑖 , 𝐱.𝑗)).

During the training phase in Algorithm 1, we initialize 𝜷(0) = 𝟎,
we fix 𝛼 = 0.5 and 𝑀 the largest eigenvalue of the likelihood
Hessian matrix evaluated at (𝜷(0), 𝜎̂). We select the optimal
parameter 𝜆𝑜𝑝𝑡 ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] by the CV-LP approach illustrated
in Subsection 4.2with𝐾 = 5 folds, 𝜆𝑚𝑎𝑥 = ‖‖‖∇𝓁

(
𝜷(0), 𝜎̂

)‖‖‖∞ ∕𝛼 and
𝜆𝑚𝑖𝑛 = 0.01 ⋅ 𝜆𝑚𝑎𝑥 . For the 𝜆’s grid, we consider 50 equispaced
points 𝜁𝑖 in the interval [log 10(𝜆𝑚𝑖𝑛), log 10(𝜆𝑚𝑎𝑥)] and take 𝜆𝑖 =
10𝜁𝑖 .

As regards the implementation of the regularized Gehan esti-
mator, we use the penAFT package with the following choice
𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =“EN,” which stands for the elastic-net penalty, with
𝛼 = 0.5, 𝑛𝑙𝑎𝑚𝑏𝑑𝑎 = 50 different values of regularization param-
eter and 𝑙𝑎𝑚𝑏𝑑𝑎.𝑟𝑎𝑡𝑖𝑜.𝑚𝑖𝑛 = 0.01. In the testing phase, to assess
the performance of bothmethods, we compute both concordance
or Harrells C-index (Harrell et al. 1984) and the integrated area
under the curve (AUC) measure (using the survAUC package in
R) on the test set.

Quantitative results. The performance measures in the two exam-
ples of cancer data are displayed in Table 6. We observe that

AFTNet performs better than penAFT in terms of concordance
and integrated AUC in the BC dataset, while in the TCGA-KIRC
dataset AFTNet performs better than penAFT only in terms of
AUC. Interestingly, the running time of AFTNet is slightly higher
than penAFT in the BC dataset, while it is much smaller in the
TCGA-KIRC dataset compared to penAFT.

Pathway analysis. To investigate the gene signature, that is,
the set of genes whose corresponding estimated coefficient in
𝜷 is nonzero, we perform a pathway analysis based on the
information from the KEGG database (https://www.genome.jp/
kegg/pathway.html). In particular, we use the COSMONET package
(see Iuliano et al. 2021) to generate the subnetworks involved
in the cancer mechanism and to identify the set of active
pathways.

Before carrying out the KEGG pathway analysis, we first sort the
list of the selected genes of eachmethod (AFTnet and penAFT) in
descending order, according to the regression coefficients. Then,
we select the top-ranked and bottom-ranked genes into positive
(top 20%) and negative (bottom 20%) genes. We perform the
pathway analysis using not-isolated genes (i.e., connected in the
adjacency matrix).

Specifically, for the BC dataset, we obtain that, for both
methods, many of the selected genes belong to specific
pathways as a group of the KEGG pathways in cancer, KEGG
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FIGURE 4 Overlapping case. Box plots of the performance metrics results between AFTNet and penAFT with 𝑛𝑇 = 110, 𝑛𝐷 = 55, 𝑝 = 220 (weak
effect) and 𝛼 = 0.5 for 𝜎 = 0.5, 1, 1.5 (from the left side to the right side), respectively, averaged over 100 independent replications and (a) 30%, (b) 50%,
and (c) 80% CR.

MAPK/ERBB/P53/chemokine signaling pathway and KEGG
cytokine–cytokine receptor interaction pathway. However,
AFTNet also includes the KEGG VEGF signaling pathway.
Indeed, the family of the VEGF proteins has been identified as
potential biomarkers of BC and indicators of treatment success
and patient survival (Brogowska, Zajkowska, andMroczko 2023).

In the TCGA-KIRC dataset, for both methods, the not-isolated
genes detected are primarily included in KEGG pathways in can-
cer, KEGG chemokine/insulin signaling pathway, and KEGG cycle
cell. Moreover, AFTNet contains the KEGG NOTCH signaling
pathway, which plays an essential role in kidney development
and disease treatments (Barak, Surendran, and Boyle 2012).
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FIGURE 5 Overlapping case. Box plots of the performancemetrics results betweenAFTNet and penAFTwith𝑛𝑇 = 275,𝑛𝐷 = 138,𝑝 = 1100 (strong
effect) and 𝛼 = 0.5 for 𝜎 = 0.5, 1, 1.5 (from the left side to the right side), respectively, averaged over 100 independent replications and (a) 30%, (b) 50%,
and (c) 80% CR.

7 Conclusions

This article proposes AFTNet, a novel network-constraint sur-
vival analysis method considering the Weibull AFT model.
AFTNet addresses the problem of high dimensionality (i.e.,
p ≫ n) and the strong correlation among variables exploiting
a double penalty that promotes both sparsity and grouping

effect. We establish the finite sample consistency and present an
efficient iterative computational algorithm based on the proximal
gradient descent method.

We show AFTNet’s effectiveness in simulations and on two real
test cases, comparing its performancewith the penAFT technique
(Suder and Molstad 2022).
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FIGURE 6 Overlapping case. The ROC curve for 𝜎 = 1 and 𝐶𝑅 = 30% with a weak effect (on the left side) and a strong effect (on the right side).

TABLE 6 Harrells C-index, integrated AUC, and computing time for AFNet and penAFTmethods over the two cancer datasets. The running time
includes the time taken for performing fivefold cross-validation (CV-LP) and model fitting to the complete training dataset with 𝛼 = 0.5.

Harrells C-index Integrated AUC Running time (s)

AFTNet penAFT AFTNet penAFT AFTNet penAFT

BC 0.671 0.639 0.396 0.325 35.174 37.757
TCGA-KIRC 0.682 0.722 0.279 0.251 52.737 297.515

Some interesting future research directions include extending the
proposed framework to other parametric AFTmodels, that is, log-
normal and log-logistic, and using other penalties, particularly
non-convex ones such as SCAD or MCP.
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Appendix

To prove Theorem 3.1, we need the following results.

Proposition A.1 (cf Proposition 2.5, p. 24 in Wainwright (2019) (Hoeffd-
ing bound)). Assume 𝑋𝑖 , 𝑖 = 1, … , 𝑛, sub-Gaussian random variables with
mean 𝜇𝑖 and parameters 𝜎𝑖 , 𝑖 = 1, … , 𝑛. Then, for all 𝑡 ≥ 0, we have

ℙ

[|||||
𝑛∑

𝑖=1

(𝑋𝑖 − 𝜇𝑖)
||||| ≥ 𝑡

]
≤ 2 exp

(
− 𝑡2∑𝑛

𝑖=1
𝜎2
𝑖

)
.

In particular, for bounded random variables, 𝑋𝑖 ∈ [𝑎, 𝑏] such that 𝜎 =
𝑏 − 𝑎

2
, we have

ℙ

[|||||
𝑛∑

𝑖=1

(𝑋𝑖 − 𝜇𝑖)
||||| ≥ 𝑡

]
≤ 2 exp

(
− 2𝑡2

𝑛(𝑏 − 𝑎)2

)
. (A1)

LemmaA.1 (Restricted strong convexity (RSC)).Under Assumptions 3.1–
3.3, it holds: ∃𝛾 > 0 and ∃𝜏 > 0 such that

⟨∇𝓁(𝑛)(𝜽∗ + Δ𝜽) −∇𝓁(𝑛)(𝜽∗), Δ𝜽⟩
≥ 𝛾‖Δ𝜽‖22
− 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖Δ𝜽‖21, for allΔ𝜽 ∶ ‖Δ𝜽‖1 ≤ 2𝑅,

with high probability.
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Proof of LemmaA.1. For the integral definition of themean value theorem
generalized to vector-valued functions for some 𝑢 ∈ [0, 1], we have

⟨∇𝓁(𝑛)(𝜽∗ + Δ𝜽) −∇𝓁(𝑛)(𝜽∗), Δ𝜽⟩ = Δ𝜽𝑇 ∫
1

0

∇2𝓁(𝑛)(𝜽∗ + 𝑢 Δ𝜽)𝑑𝑢 Δ𝜽,

for ‖Δ𝜽‖1 ≤ 2𝑅 and where the matrix integral is element-wise. The right-
hand side of the equality can be decomposed as TERM1 + TERM2,where

TERM1 = Δ𝜽𝑇 ∫
1

0

𝔼𝑋𝑌

(
∇2𝓁(𝑛)(𝜽∗ + 𝑢 Δ𝜽)

)
𝑑𝑢Δ𝜽, (A2)

TERM2 = Δ𝜽𝑇

{
∫

1

0

∇2𝓁(𝑛)(𝜽∗ + 𝑢 Δ𝜽) − 𝔼𝑋𝑌

(
∇2𝓁(𝑛)(𝜽∗ + 𝑢 Δ𝜽)

)
𝑑𝑢

}
Δ𝜽. (A3)

Let us consider first Equation (A2). Note that ‖𝜽∗ − (𝜽∗ + 𝑢Δ𝜽)‖1 =
𝑢‖Δ𝜽‖1 ≤ 2𝑅. Hence, it holds Assumption 3.3 and we have

TERM1 = Δ𝜽𝑇 ∫
1

0

𝔼𝑋𝑌

(
∇2𝓁(𝑛)(𝜽∗ + 𝑢 Δ𝜽)

)
𝑑𝑢Δ𝜽 ≥ 𝛾Δ𝜽𝑇Δ𝜽 = 𝛾‖Δ𝜽‖22.

Now consider Equation (A3) and define

𝐺Δ𝜽(𝑢) = ∇2𝓁(𝑛)(𝜽∗ + 𝑢 Δ𝜽) − 𝔼𝑋𝑌

(
∇2𝓁(𝑛)(𝜽∗ + 𝑢 Δ𝜽)

)
,

then, Equation (A3) became

TERM2 = Δ𝜽𝑇 ∫
1

0

𝐺Δ𝜽(𝑢)𝑑𝑢Δ𝜽.

Therefore, we have by Hölder’s inequality

|TERM2| = |||||Δ𝜽𝑇 ∫
1

0

𝐺Δ𝜽(𝑢)𝑑𝑢Δ𝜽
||||| ≤ ‖Δ𝜽‖1 ‖‖‖‖‖∫

1

0

𝐺Δ𝜽(𝑢)𝑑𝑢Δ𝜽
‖‖‖‖‖∞

= ‖Δ𝜽‖1 max
1≤𝑘≤𝑝+1

||||||
𝑝+1∑
𝑗=1

(
∫

1

0

𝐺Δ𝜽(𝑢)𝑑𝑢

)
𝑘𝑗

Δ𝜽𝑗

||||||
≤ ‖Δ𝜽‖1 max

1≤𝑘≤𝑝+1

‖‖‖‖‖‖
(
∫

1

0

𝐺Δ𝜽(𝑢)𝑑𝑢

)
𝑘⋅

‖‖‖‖‖‖∞ ‖Δ𝜽‖1
= ‖Δ𝜽‖21 max

1≤𝑘,𝑗≤𝑝+1

||||||
(
∫

1

0

𝐺Δ𝜽(𝑢)𝑑𝑢

)
𝑘𝑗

||||||
≤ ‖Δ𝜽‖21 max

1≤𝑘,𝑗≤𝑝+1

(
∫

1

0

|||𝐺Δ𝜽(𝑢)
|||𝑑𝑢
)

𝑘𝑗

≤ ‖Δ𝜽‖21 sup
𝑢∈[0,1]

max
1≤𝑘,𝑗≤𝑝+1

|||𝐺Δ𝜽
𝑘𝑗

(𝑢)
|||.

Using an 𝜀-net argument, we define a grid of points for 𝑢, that is,
𝑢𝑚 = 𝑚∕𝑛,𝑚 = 1, … , 𝑛. Then, ∀𝑢 ∈ [0, 1], , ∃𝑚 ∶ |𝑢 − 𝑢𝑚| ≤ 1∕𝑛 and

|TERM2| ≤ ‖Δ𝜽‖21 max
1≤𝑚≤𝑛

max
1≤𝑘,𝑗≤𝑝+1

|||𝐺Δ𝜽
𝑘𝑗

(𝑢𝑚)
|||

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
TERM2𝐴

+ ‖Δ𝜽‖21 sup|𝑢−𝑢𝑚 |≤1∕𝑛
max

1≤𝑘,𝑗≤𝑝+1

|||𝐺Δ𝜽
𝑘𝑗

(𝑢) − 𝐺Δ𝜽
𝑘𝑗

(𝑢𝑚)
|||

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
TERM2𝐵

We consider first TERM2𝐵. Note that 𝐺Δ𝜽
𝑘𝑗

(𝑢) is continuous in 𝑢 ∈ [0, 1],
∀𝑘, 𝑗 and therefore locally Lipschitz over [0,1]. So, we have

|TERM2𝐵| ≤ 𝐶 sup|𝑢−𝑢𝑚 |≤1∕𝑛
|𝑢 − 𝑢𝑚| ‖Δ𝜽‖21 = 𝐶

𝑛
‖Δ𝜽‖21,

where 𝐶 is a Lipschitz constant. We use the Hoeffding inequality for
TERM2𝐴. Let us consider for all𝑚, 𝑘, 𝑗 fixed

|||𝐺Δ𝜽
𝑘𝑗

(𝑢𝑚)
||| = ||||||
{

∇2𝓁(𝑛)(𝜽∗ + 𝑢𝑚 Δ𝜽) − 𝔼𝑋𝑌

(
∇2𝓁(𝑛)(𝜽∗ + 𝑢𝑚 Δ𝜽)

)}
𝑘𝑗

||||||
=
||||||−

1

𝑛

{
𝑛∑

𝑖=1

[
∇2𝓁𝑖(𝜽

∗ + 𝑢𝑚 Δ𝜽) − 𝔼𝑋𝑌

(
∇2𝓁𝑖(𝜽

∗ + 𝑢𝑚 Δ𝜽)
)]}

𝑘𝑗

||||||
=
||||| 1𝑛

𝑛∑
𝑖=1

[𝑍𝑖 − 𝔼(𝑍𝑖)]
|||||,

with 𝑍𝑖 =
[
∇2𝓁𝑖(𝜽

∗ + 𝑢𝑚 Δ𝜽)
]
𝑘𝑗
bounded and independent random vari-

ables, implying𝑍𝑖 sub-Gaussian variables. Now,we canuseEquation (A1)

ℙ
(|||𝐺Δ𝜽

𝑘𝑗
(𝑢𝑚)
||| ≥ 𝑡
)
= ℙ

(||||| 1𝑛
𝑛∑

𝑖=1

[𝑍𝑖 − 𝔼(𝑍𝑖)]
||||| ≥ 𝑡

)
≤ 2 exp

(
−𝑛𝑡2

𝑐

)
,

where 𝑐 is the sub-Gaussian parameter. Therefore, from

TERM2𝐴 = ‖Δ𝜽‖21 max
1≤𝑚≤𝑛

max
1≤𝑘,𝑗≤𝑝+1

|||𝐺Δ𝜽
𝑘𝑗

(𝑢𝑚)
|||,

it follows

ℙ

(
max
1≤𝑚≤𝑛

max
1≤𝑘,𝑗≤𝑝+1

|||𝐺Δ𝜽
𝑘𝑗

(𝑢𝑚)
||| ≥ 𝑡

)
= ℙ

(
𝑛⋃

𝑚=1

𝑝+1⋃
𝑘.𝑗=1

|||𝐺Δ𝜽
𝑘𝑗

(𝑢𝑚)
||| ≥ 𝑡

)

≤
𝑛∑

𝑚=1

𝑝+1∑
𝑘.𝑗=1

ℙ
(|||𝐺Δ𝜽

𝑘𝑗
(𝑢𝑚)
||| ≥ 𝑡
)

≤
𝑛∑

𝑚=1

𝑝+1∑
𝑘.𝑗=1

2 exp

(
−𝑛𝑡2

𝑐

)

= 2𝑛(𝑝 + 1)2 exp

(
−𝑛𝑡2

𝑐

)
.

We define 𝜀 = 2𝑛(𝑝 + 1)2 exp
(
− 𝑛𝑡2

𝑐

)
. Thus, we get

exp

(
−𝑛𝑡2

𝑐

)
= 𝜀

2𝑛(𝑝 + 1)2
⇒ 𝑡 =

√[
log

2𝑛(𝑝 + 1)2

𝜀

]
𝑐

𝑛
.

Therefore, for all 𝜀 > 0,

ℙ
⎛⎜⎜⎝TERM2𝐴 ≤

√[
log

2𝑛(𝑝 + 1)2

𝜀

]
𝑐

𝑛

⎞⎟⎟⎠ ≥ 1 − 𝜀,

hence,

|TERM2| ≤ ‖Δ𝜽‖21 𝐶

𝑛
+ ‖Δ𝜽‖21

√[
log

2𝑛(𝑝 + 1)2

𝜀

]
𝑐

𝑛

≤ ‖Δ𝜽‖21
{

𝐶

𝑛
+
√

𝑐 log (2(𝑝 + 1)∕𝜀)

𝑛
+
√

𝑐 log (𝑛(𝑝 + 1))

𝑛

}
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with a probability of at least 1 − 𝜀. Finally, combining all terms, it follows
that it exists 𝜏 > 0, such that

⟨∇𝓁(𝑛)(𝜽∗ + Δ𝜽) −∇𝓁(𝑛)(𝜽∗), Δ𝜽⟩ = TERM1 + TERM2

≥ 𝛾 ‖Δ𝜽‖22 − 𝜏 ‖Δ𝜽‖21
√

log 𝑛(𝑝 + 1)

𝑛
,

with a probability of at least 1 − 𝜀. □

Lemma A.2 (Bounded gradient). Under Assumptions 3.1–3.3, it holds

max

{‖∇𝓁(𝑛)(𝜽∗)‖∞, 𝜏 𝑅

√
log 𝑛(𝑝 + 1)

𝑛

}
≤ 𝜆𝛼

4
, (A4)

with high probability and suitable choice of 𝜆 > 0.

Proof of Lemma A.2. To obtain Equation (A4) is sufficient to prove that

‖‖‖∇𝓁(𝑛)(𝜽∗)
‖‖‖∞ = 𝑂𝑝

(√
log (𝑛(𝑝 + 1))

𝑛

)
. (A5)

From Equation (17), for all 𝑗 = 1, … , 𝑝 + 1 and 𝑡 ≥ 0, we have

ℙ

(||||| 𝜕𝓁
(𝑛)(𝜽∗)

𝜕𝜽𝑗

||||| ≥ 𝑡

)
= ℙ

(|||||− 1

𝑛

𝑛∑
𝑖=1

𝜕𝓁𝑖(𝜽
∗)

𝜕𝜽𝑗

||||| ≥ 𝑡

)
= ℙ

(||||| 1𝑛
𝑛∑

𝑖=1

𝑍𝑖

||||| ≥ 𝑡

)
,

with 𝑍𝑖 =
𝜕𝓁𝑖 (𝜽

∗)

𝜕𝜽𝑗
sub-Gaussian random variables with zero mean being

𝔼𝑋𝑌(∇𝓁(𝑛)(𝜽∗)) = 0. Using Equation (A1), we have

ℙ

(||||| 𝜕𝓁
(𝑛)(𝜽∗)

𝜕𝜽𝑗

||||| ≥ 𝑡

)
≤ 2 exp

(
−𝑛𝑡2

𝑐

)
,

where 𝑐 is the sub-Gaussian parameter. Hence, we get

ℙ
(‖∇𝓁(𝑛)(𝜽∗)‖∞ ≥ 𝑡

)
= ℙ

(
max

1≤𝑗≤𝑝+1

||||| 𝜕𝓁
(𝑛)(𝜽∗)

𝜕𝜽𝑗

||||| ≥ 𝑡

)

= ℙ

( ⋃
1≤𝑗≤𝑝+1

||||| 𝜕𝓁
(𝑛)(𝜽∗)

𝜕𝜽𝑗

||||| ≥ 𝑡

)

≤
𝑝+1∑
𝑗=1

ℙ

(||||| 𝜕𝓁
(𝑛)(𝜽∗)

𝜕𝜽𝑗

||||| ≥ 𝑡

)
≤

𝑝+1∑
𝑗=1

2 exp

(
−𝑛𝑡2

𝑐

)

= 2(𝑝 + 1) exp

(
−𝑛𝑡2

𝑐

)
.

We define 𝜀 = 2(𝑝 + 1) exp
(
− 𝑛𝑡2

𝑐

)
, thus, we get

exp

(
−𝑛𝑡2

𝑐

)
= 𝜀

2(𝑝 + 1)
⇒ 𝑡 =

√
𝑐

𝑛
log

(
2(𝑝 + 1)

𝜀

)
.

This implies that

ℙ
⎛⎜⎜⎝‖∇𝓁(𝑛)(𝜽∗)‖∞ ≤

√
𝑐

𝑛
log

(
2(𝑝 + 1)

𝜀

)⎞⎟⎟⎠ ≥ 1 − 𝜀,

consequently, it holds Equation (A5). □

Now we are able to demonstrate Theorem 3.1.

Proof of Theorem 3.1. Define the error vector 𝝂 = 𝜽 − 𝜽∗. Under Assump-
tion 3.2, we have ‖𝝂‖1 ≤ ‖𝜽‖1 + ‖𝜽∗‖1 ≤ 2𝑅; hence, by Lemma A.1, it
holds the RSC

⟨∇𝓁(𝑛)(𝜽) −∇𝓁(𝑛)(𝜽∗), 𝝂⟩ ≥ 𝛾‖𝝂‖22 − 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21,

from which follows that

𝛾‖𝝂‖22 ≤ ⟨∇𝓁(𝑛)(𝜽) −∇𝓁(𝑛)(𝜽∗), 𝝂⟩ + 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21. (A6)

Since ‖𝜽∗‖1 ≤ 𝑅, by using the first-order condition for 𝜽, we have

⟨∇𝓁(𝑛)(𝜽) +∇𝜆,𝛼(𝜽), 𝜽
∗ − 𝜽⟩ ≥ 0

(note that the penalty is only on 𝜷, so we have implicitly assumed that the
last element of 𝜆(𝜽) is zero), that is,

⟨∇𝓁(𝑛)(𝜽) +∇𝜆,𝛼(𝜽),−𝝂⟩ ≥ 0, ⇒ ⟨∇𝓁(𝑛)(𝜽), 𝝂⟩ ≤ ⟨∇𝜆,𝛼(𝜽),−𝝂⟩,
and using this inequality in Equation (A6), we have

𝛾‖𝝂‖22 ≤ ⟨∇𝓁(𝑛)(𝜽), 𝝂⟩ − ⟨∇𝓁(𝑛)(𝜽∗), 𝝂⟩ + 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21

≤ ⟨∇𝜆,𝛼(𝜽),−𝝂⟩ − ⟨∇𝓁(𝑛)(𝜽∗), 𝝂⟩ + 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21

= ⟨𝜆𝛼∇‖𝜷‖1 + 𝜆(1 − 𝛼)∇‖𝑳 1

2 𝜷‖22, 𝜷∗ − 𝜷⟩ − ⟨∇𝓁(𝑛)(𝜽∗), 𝝂⟩
+ 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21

= ⟨𝜆𝛼∇‖𝜷‖1, 𝜷∗ − 𝜷⟩ + ⟨2𝜆(1 − 𝛼)𝑳𝜷, 𝜷∗ − 𝜷⟩ − ⟨∇𝓁(𝑛)(𝜽∗), 𝝂⟩
+ 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21

≤ ⟨𝜆𝛼∇‖𝜷‖1, 𝜷∗ − 𝜷⟩ + |⟨2𝜆(1 − 𝛼)𝑳𝜷, 𝜷∗ − 𝜷⟩| − ⟨∇𝓁(𝑛)(𝜽∗), 𝝂⟩
+ 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21.

Now, since the LASSO penalty is convex, using Cauchy–Schwarz inequal-
ity and Hölder inequality, we have

𝛾‖𝝂‖22 ≤ 𝜆𝛼‖𝜷∗‖1 − 𝜆𝛼‖𝜷‖1 + 2𝜆(1 − 𝛼)‖𝑳𝜷‖2 ‖𝜷∗ − 𝜷‖2
− ⟨∇𝓁(𝑛)(𝜽∗), 𝝂⟩ + 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21

≤ 𝜆𝛼‖𝜷∗‖1 − 𝜆𝛼‖𝜷‖1 + 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳)‖𝜷‖2 ‖𝜷∗ − 𝜷‖2
+ |⟨∇𝓁(𝑛)(𝜽∗), 𝝂⟩| + 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21

≤ 𝜆𝛼‖𝜷∗‖1 − 𝜆𝛼‖𝜷‖1 + 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳) 𝑅 ‖𝜷∗ − 𝜷‖2
+ ‖∇𝓁(𝑛)(𝜽∗)‖∞‖𝝂‖1 + 𝜏

√
log 𝑛(𝑝 + 1)

𝑛
‖𝝂‖21,

≤ 𝜆𝛼‖𝜷∗‖1 − 𝜆𝛼‖𝜷‖1 + 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳) 𝑅 ‖𝝂‖2
+ ‖𝝂‖1 [‖∇𝓁(𝑛)(𝜽∗)‖∞ + 𝜏 𝑅

√
log 𝑛(𝑝 + 1)

𝑛

]
,

where 𝜆𝑚𝑎𝑥(𝐿) is the maximum eigenvalue of 𝑳. Now using Lemma A.2

𝛾‖𝝂‖22 ≤ 𝜆𝛼‖𝜷∗‖1 − 𝜆𝛼‖𝜷‖1 + 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳) 𝑅 ‖𝝂‖2 + 𝜆𝛼

2
‖𝝂‖1

≤ 3

2
𝜆𝛼‖𝜷∗‖1 − 𝜆𝛼

2
‖𝜷‖1 + 𝜆𝛼

2
|𝜎̂ − 𝜎∗| + 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳) 𝑅 ‖𝝂‖2.

(A7)
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In case 3

2
𝜆𝛼‖𝜷∗‖1 − 𝜆𝛼

2
‖𝜷‖1 > 0, by using Lemma 5 in Appendix A.1 of

Loh and Wainwright (2015) with 𝜉 = 3, we obtain

3

2
𝜆𝛼‖𝜷∗‖1 − 𝜆𝛼

2
‖𝜷‖1 ≤ 𝜆𝛼

2

(
3‖(𝜷 − 𝜷∗)𝐴‖1 − ‖(𝜷 − 𝜷∗)𝐴𝑐‖1),

where𝐴 is the set of the 𝑠 largest elements of 𝜷 − 𝜷∗ in magnitude and𝐴𝑐

is the complementary set, 𝑠, being defined in Equation (18).

Then, we have

𝛾‖𝝂‖22 ≤ 𝜆𝛼

2

[
3‖(𝜷 − 𝜷∗)𝐴‖1 − ‖(𝜷 − 𝜷∗)𝐴𝑐‖1, ] + 3

2
𝜆𝛼|𝜎̂ − 𝜎∗|

+ 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳) 𝑅 ‖𝝂‖2
≤ 3

2
𝜆𝛼‖(𝜷 − 𝜷∗)𝐴‖1 + 3

2
𝜆𝛼|𝜎̂ − 𝜎∗| + 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳) 𝑅 ‖𝝂‖2

≤ 3

2
𝜆𝛼 ‖𝝂𝐴‖1 + 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳) 𝑅 ‖𝝂‖2

≤ 3

2
𝜆𝛼
√

𝑠 + 1 ‖𝝂‖2 + 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳) 𝑅 ‖𝝂‖2
from which we finally obtain

‖𝝂‖2 ≤
3

2
𝜆𝛼
√

𝑠 + 1 + 2𝜆(1 − 𝛼)𝜆𝑚𝑎𝑥(𝑳) 𝑅

𝛾
.

In case 3

2
𝜆𝛼‖𝜷∗‖1 − 𝜆𝛼

2
‖𝜷‖1 ≤ 0, the bound follows easily from Equa-

tion (A7). □
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