The present work describes the changes in the activities of key antioxidant enzymes and the levels of some metabolites in relation to salt tolerance in eight wild almond species. All the species were exposed to four levels of NaCl (control, 40, 80 and 120 mM). Plant fresh biomass, α-, γ- and δ-tocopherol, total soluble proteins, malondialdehyde (MDAeq), H2O2, total phenolics, and the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were analyzed in leaves of salt-stressed and non-stressed plants of the eight almond species. In all the species, salt stress significantly enhanced the activities of SOD and POD, levels of total phenolics and γ- and δ-tocopherols. High levels of salt stress significantly depressed the levels of total soluble proteins, MDA and CAT activity, while salt stress did not significantly affect leaf H2O2 contents. Regression analysis showed that the relationship between salt levels and total soluble proteins, CAT, γ-tocopherol, MDAeq, SOD and POD were statistically significant. Principal component analysis discriminated the almond species on the basis of their degree of tolerance/sensitivity to saline conditions: Prunus reuteri and P. glauca were ranked as salt tolerant, P. lycioides and P. scoparia as moderately tolerant, and P. communis, P. eleagnifolia , P. arabica and P. orientalis as salt sensitive. The results could be used for selecting salt tolerant genotypes to be used as rootstocks for almond cultivation.

Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species

SOFO, Adriano
2012-01-01

Abstract

The present work describes the changes in the activities of key antioxidant enzymes and the levels of some metabolites in relation to salt tolerance in eight wild almond species. All the species were exposed to four levels of NaCl (control, 40, 80 and 120 mM). Plant fresh biomass, α-, γ- and δ-tocopherol, total soluble proteins, malondialdehyde (MDAeq), H2O2, total phenolics, and the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were analyzed in leaves of salt-stressed and non-stressed plants of the eight almond species. In all the species, salt stress significantly enhanced the activities of SOD and POD, levels of total phenolics and γ- and δ-tocopherols. High levels of salt stress significantly depressed the levels of total soluble proteins, MDA and CAT activity, while salt stress did not significantly affect leaf H2O2 contents. Regression analysis showed that the relationship between salt levels and total soluble proteins, CAT, γ-tocopherol, MDAeq, SOD and POD were statistically significant. Principal component analysis discriminated the almond species on the basis of their degree of tolerance/sensitivity to saline conditions: Prunus reuteri and P. glauca were ranked as salt tolerant, P. lycioides and P. scoparia as moderately tolerant, and P. communis, P. eleagnifolia , P. arabica and P. orientalis as salt sensitive. The results could be used for selecting salt tolerant genotypes to be used as rootstocks for almond cultivation.
2012
File in questo prodotto:
File Dimensione Formato  
Sorkheh et al - APP 2012.pdf

non disponibili

Tipologia: Abstract
Licenza: DRM non definito
Dimensione 558.49 kB
Formato Adobe PDF
558.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/18368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 47
social impact