Grapevine is among the most economically important crops suffering environmental constraints, including drought and salt stress. Although imaging is increasingly used to detect abiotic stress in agriculture, image-based phenotyping in grapevine still needs optimisation. This study presents the RGB-(red, green, blue)-based phenotyping of the early stage of salt stress response in potted grapevine (Aleatico/SO4) irrigated with saline water (100 mM NaCl) for 9 days in contrast with vines irrigated with fresh water. The response was measured using stomatal conductance (gs), net photosynthetic rate (A), transpiration (E), maximum potential photosynthetic efficiency (Fv/Fm), stem water potential (SWP) concurrently with RGB imaging via a robotised platform. The image-based phenotyping of salt-stressed vines employed two sets of measurements: (i) the pixel fraction of specific colour bands (Yellow, Green, Brown and Dark Green) and (ii) the mean pixel value of R, G and B and other RGB-based colorimetric indexes. Results show that the responses of gs, A, E, Fv/Fm were closely related to increasing soil electrical conductivity (EC) and that imaging could detect the EC threshold of approx. 4 dS m-1 causing a 60 % decrease in these physiological traits compared to the pre-stress level. The SWP declined to about -0.7 MPa at the end of the experiment. The change of the relative pixel fraction of Dark Green to increasing EC has been analysed within a dose-response context, showing that a decrease of 1 % of the Dark Green colour band corresponded to the 4 dS m-1 EC threshold. This study also examined the use of the mean pixel value of the R, G and B channels as proxies of EC along with new RGB-based indexes resulting from the rearrangement of original R, G and B mean pixel values. Results show the suitability of the mean pixel value of R and Coloration Index [(R-B)/R] to serve as predictors of EC (R2 >= 0.80).

Image-based sensing of salt stress in grapevine

Montanaro G.
;
Briglia N.;Carlomagno A.;Cellini F.;Nuzzo V.
2024-01-01

Abstract

Grapevine is among the most economically important crops suffering environmental constraints, including drought and salt stress. Although imaging is increasingly used to detect abiotic stress in agriculture, image-based phenotyping in grapevine still needs optimisation. This study presents the RGB-(red, green, blue)-based phenotyping of the early stage of salt stress response in potted grapevine (Aleatico/SO4) irrigated with saline water (100 mM NaCl) for 9 days in contrast with vines irrigated with fresh water. The response was measured using stomatal conductance (gs), net photosynthetic rate (A), transpiration (E), maximum potential photosynthetic efficiency (Fv/Fm), stem water potential (SWP) concurrently with RGB imaging via a robotised platform. The image-based phenotyping of salt-stressed vines employed two sets of measurements: (i) the pixel fraction of specific colour bands (Yellow, Green, Brown and Dark Green) and (ii) the mean pixel value of R, G and B and other RGB-based colorimetric indexes. Results show that the responses of gs, A, E, Fv/Fm were closely related to increasing soil electrical conductivity (EC) and that imaging could detect the EC threshold of approx. 4 dS m-1 causing a 60 % decrease in these physiological traits compared to the pre-stress level. The SWP declined to about -0.7 MPa at the end of the experiment. The change of the relative pixel fraction of Dark Green to increasing EC has been analysed within a dose-response context, showing that a decrease of 1 % of the Dark Green colour band corresponded to the 4 dS m-1 EC threshold. This study also examined the use of the mean pixel value of the R, G and B channels as proxies of EC along with new RGB-based indexes resulting from the rearrangement of original R, G and B mean pixel values. Results show the suitability of the mean pixel value of R and Coloration Index [(R-B)/R] to serve as predictors of EC (R2 >= 0.80).
2024
File in questo prodotto:
File Dimensione Formato  
2024 OENOne sensing salinity vitis.pdf

accesso aperto

Tipologia: Pdf editoriale
Licenza: Creative commons
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/176515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact