This study presents an exploration of the efficacy of brassinosteroids (BRs) and ethylene in mediating heat stress tolerance in rice (Oryza sativa). Heat is one of the major abiotic factors that prominently deteriorates rice production by influencing photosynthetic efficiency, source‒sink capacity, and growth traits. The application of BR (0.5 mM) and ethylene (200 μl l-1) either individually and/or in combination was found to alleviate heat stress-induced toxicity by significantly improving photosynthesis, source‒sink capacity and defense systems; additionally, it reduced the levels of oxidative stress markers and ethylene formation. The study revealed the positive influence of BR in promoting plant growth responses under heat stress through its interplay with ethylene biosynthesis and enhanced plant defense systems. Interestingly, treatment with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) substantiated that BR application to heat-stressed rice plants enhanced ethylene-dependent pathways to counteract the underlying adversities. Thus, BR action was found to be mediated by ethylene to promote heat tolerance in rice. The present study sheds light on the potential tolerance mechanisms which can ensure rice sustainability under heat stress conditions.

Brassinosteroid modulates ethylene synthesis and antioxidant metabolism to protect rice (Oryza sativa) against heat stress-induced inhibition of source‒sink capacity and photosynthetic and growth attributes

Sofo, Adriano;
2023-01-01

Abstract

This study presents an exploration of the efficacy of brassinosteroids (BRs) and ethylene in mediating heat stress tolerance in rice (Oryza sativa). Heat is one of the major abiotic factors that prominently deteriorates rice production by influencing photosynthetic efficiency, source‒sink capacity, and growth traits. The application of BR (0.5 mM) and ethylene (200 μl l-1) either individually and/or in combination was found to alleviate heat stress-induced toxicity by significantly improving photosynthesis, source‒sink capacity and defense systems; additionally, it reduced the levels of oxidative stress markers and ethylene formation. The study revealed the positive influence of BR in promoting plant growth responses under heat stress through its interplay with ethylene biosynthesis and enhanced plant defense systems. Interestingly, treatment with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) substantiated that BR application to heat-stressed rice plants enhanced ethylene-dependent pathways to counteract the underlying adversities. Thus, BR action was found to be mediated by ethylene to promote heat tolerance in rice. The present study sheds light on the potential tolerance mechanisms which can ensure rice sustainability under heat stress conditions.
2023
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0176161723001906-main.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 9.15 MB
Formato Adobe PDF
9.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/173495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact