The Virus HIV-1 infection still represents a serious disease even if actually it is transformed in chronic pathology. Considering the crucial role of the enzyme Protease in life cycle of HIV many efforts have been made in the research of new organic compounds showing inhibitory activity. After development of several series of non peptidic inhibitors we report here the synthesis of novel simple HIV-Protease inhibitors containing heteroaryl carboxamides and their antiviral activity in vitro and in HEK293 cells. Benzofuryl- benzothienyl- and indolyl rings as well as aryl sulfonamides with different electronic properties have been introduced by efficient synthetic procedures. All compounds showed inhibitory activity similar to the commercial drug Darunavir, effective against both wild-type HIV-1 protease and that containing the V32I or V82A mutations. Absorption, distribution, metabolism, excretion (ADME) properties were also evaluated in silico, showing the potential of such compounds to be developed as drugs.

Novel wild type and mutate HIV-1 protease inhibitors containing heteroaryl carboxamides in P2: Synthesis, biological evaluations and in silico ADME prediction

Maria Francesca Armentano;Faustino Bisaccia;Rocchina Miglionico;Ilaria Nigro;Alessandro Santarsiere;Maria Funicello
;
Lucia Chiummiento
2023-01-01

Abstract

The Virus HIV-1 infection still represents a serious disease even if actually it is transformed in chronic pathology. Considering the crucial role of the enzyme Protease in life cycle of HIV many efforts have been made in the research of new organic compounds showing inhibitory activity. After development of several series of non peptidic inhibitors we report here the synthesis of novel simple HIV-Protease inhibitors containing heteroaryl carboxamides and their antiviral activity in vitro and in HEK293 cells. Benzofuryl- benzothienyl- and indolyl rings as well as aryl sulfonamides with different electronic properties have been introduced by efficient synthetic procedures. All compounds showed inhibitory activity similar to the commercial drug Darunavir, effective against both wild-type HIV-1 protease and that containing the V32I or V82A mutations. Absorption, distribution, metabolism, excretion (ADME) properties were also evaluated in silico, showing the potential of such compounds to be developed as drugs.
2023
File in questo prodotto:
File Dimensione Formato  
2023-Results in Chemistry-antivirali.pdf

solo utenti autorizzati

Licenza: Non definito
Dimensione 864.44 kB
Formato Adobe PDF
864.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/172795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact