The olive tree (Olea europaea L.) is commonly grown in the Mediterranean basin and is able to resist severe and prolonged drought. Levels of proline (PRO) and malondialdehyde (MDA), and the lipoxygenase (LOX) activity were determined in 2-year-old olive plants (cv. ‘Coratina’) grown in environmental conditions characterized by high temperatures and high photosynthetic photon flux density levels and gradually subjected to a controlled water deficit for 20 days. Before and during the experimental period, leaf and root samples were collected and analysed for PRO and MDA. The levels of PRO increased in parallel with the severity of drought stress in both leaves and roots. Significant increases of LOX activity and MDA content were also observed during the progressive increment of drought stress in both leaf and root tissues. Measurements of transpiration and photosynthetic rate, stomatal conductance and substomatal CO2 concentration were carried out during the experiment. The accumulation of PRO indicates a possible role of PRO in drought tolerance. The increases of MDA content and LOX activity show that the water deficit is associated with lipid peroxidation mechanisms.

Lipoxygenase activity and proline accumulation in leaves and roots of olive tree in response to drought stress

SOFO, Adriano;DICHIO, Bartolomeo;XILOYANNIS, Cristos;
2004-01-01

Abstract

The olive tree (Olea europaea L.) is commonly grown in the Mediterranean basin and is able to resist severe and prolonged drought. Levels of proline (PRO) and malondialdehyde (MDA), and the lipoxygenase (LOX) activity were determined in 2-year-old olive plants (cv. ‘Coratina’) grown in environmental conditions characterized by high temperatures and high photosynthetic photon flux density levels and gradually subjected to a controlled water deficit for 20 days. Before and during the experimental period, leaf and root samples were collected and analysed for PRO and MDA. The levels of PRO increased in parallel with the severity of drought stress in both leaves and roots. Significant increases of LOX activity and MDA content were also observed during the progressive increment of drought stress in both leaf and root tissues. Measurements of transpiration and photosynthetic rate, stomatal conductance and substomatal CO2 concentration were carried out during the experiment. The accumulation of PRO indicates a possible role of PRO in drought tolerance. The increases of MDA content and LOX activity show that the water deficit is associated with lipid peroxidation mechanisms.
2004
File in questo prodotto:
File Dimensione Formato  
3-Xiloyannis-PHYSIOLOGIA PLANTARUM 121 58ÔÇô65. 2004.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 154.8 kB
Formato Adobe PDF
154.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/16630
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 195
  • ???jsp.display-item.citation.isi??? 173
social impact