Gravel bars have an important role in the exchange between surface and subsurface waters, in preventing and mitigating riverbank erosion, in allowing the recreational use of rivers, and in preserving fluvial or riparian habitats for species of fishes, invertebrates, plants, and birds. In many cases, gravel bars constitute an important substrate for the establishment and development of ground flora and woody vegetation and guarantee higher plant diversity. A sustainable management of braided rivers should, therefore, ensure their ecological potential and biodiversity by preserving a suitable braiding structure over time. In the present study, we propose an analytical-numerical model for predicting the evolution of gravel bars in conditions of dynamical equilibrium. The model is based on the combination of sediment balance equation and a regression formula relating dimensionless unit bedload rate and stream power. The results highlight the dependence of the evolving sediment particles’ pattern on the ratio of initial macro-bedforms longitudinal dimension to river width, which determines the gradual transition from advective and highly braiding to diffusive transport regime. Specifically, the tendency to maintain braiding and flow bifurcation is associated with equilibrium average bed profiles and, therefore, equilibrium average stream power characterized by the maximum period that does not exceed transverse channel dimension.

Theoretical investigation of equilibrium dynamics in braided gravel beds for the preservation of a sustainable fluvial environment

Pannone M.
;
De Vincenzo A.
2021-01-01

Abstract

Gravel bars have an important role in the exchange between surface and subsurface waters, in preventing and mitigating riverbank erosion, in allowing the recreational use of rivers, and in preserving fluvial or riparian habitats for species of fishes, invertebrates, plants, and birds. In many cases, gravel bars constitute an important substrate for the establishment and development of ground flora and woody vegetation and guarantee higher plant diversity. A sustainable management of braided rivers should, therefore, ensure their ecological potential and biodiversity by preserving a suitable braiding structure over time. In the present study, we propose an analytical-numerical model for predicting the evolution of gravel bars in conditions of dynamical equilibrium. The model is based on the combination of sediment balance equation and a regression formula relating dimensionless unit bedload rate and stream power. The results highlight the dependence of the evolving sediment particles’ pattern on the ratio of initial macro-bedforms longitudinal dimension to river width, which determines the gradual transition from advective and highly braiding to diffusive transport regime. Specifically, the tendency to maintain braiding and flow bifurcation is associated with equilibrium average bed profiles and, therefore, equilibrium average stream power characterized by the maximum period that does not exceed transverse channel dimension.
2021
File in questo prodotto:
File Dimensione Formato  
sustainability-13-01246-v2.pdf

accesso aperto

Descrizione: Articolo pdf versione definitiva
Tipologia: Pdf editoriale
Licenza: Dominio pubblico
Dimensione 6.13 MB
Formato Adobe PDF
6.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/154486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact