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Abstract: Gravel bars have an important role in the exchange between surface and subsurface waters,
in preventing and mitigating riverbank erosion, in allowing the recreational use of rivers, and in
preserving fluvial or riparian habitats for species of fishes, invertebrates, plants, and birds. In many
cases, gravel bars constitute an important substrate for the establishment and development of ground
flora and woody vegetation and guarantee higher plant diversity. A sustainable management of
braided rivers should, therefore, ensure their ecological potential and biodiversity by preserving
a suitable braiding structure over time. In the present study, we propose an analytical–numerical
model for predicting the evolution of gravel bars in conditions of dynamical equilibrium. The
model is based on the combination of sediment balance equation and a regression formula relating
dimensionless unit bedload rate and stream power. The results highlight the dependence of the
evolving sediment particles’ pattern on the ratio of initial macro-bedforms longitudinal dimension
to river width, which determines the gradual transition from advective and highly braiding to
diffusive transport regime. Specifically, the tendency to maintain braiding and flow bifurcation is
associated with equilibrium average bed profiles and, therefore, equilibrium average stream power
characterized by the maximum period that does not exceed transverse channel dimension.

Keywords: gravel-bed braided rivers; sustainable fluvial environment; fluvial habitats; equilibrium
bed profiles; sediment continuity equation; analytical–numerical solution

1. Introduction

Braided rivers are typically organized in multithread patterns, with central or al-
ternate bars dividing channels whose reach-scale statistical properties are controlled by
discharge, bed slope, and grain size [1–5]. Braiding in gravel-bed streams may derive
from one of several mechanisms, including chute cut-off of point or alternating bars, flow
division around a transverse bar, dissection of multiple bars, and central bar formation [6].
Interactions among braided pattern, channel morphology, and bedload transport are signif-
icant [7]. Indeed, bedload transport in gravel-bed rivers is a very intricate phenomenon
that is characterized by high variability in time and space [8–11]. Such variability derives
from different mechanisms that act at different spatial scales [12–15], ranging from grain
to reach: (1) the movement of single grains (e.g., [16–19]); (2) the creation of small bed
forms, such as sediment waves [6], bed waves [20], and bedload sheets [21,22]; and (3)
large-scale morphological processes, such as bar formation and migration, activation and
abandonment of anabranches and side-channel shift [6,23,24]. The combination of all
these processes results in a fluctuating nature of bedload transport, which was initially
recognized by field surveys [25–28] and later confirmed by innovative measurement proce-
dures [29–32]. As a matter of fact, several experimental studies performed under steady
flow and sediment-supply conditions highlighted huge fluctuations of bedload transport
rates both in single-thread [12,13,22,33] and braided channels [6,33]. At grain scale, channel
morphological dynamics are the result of single-particle displacements from erosion sites
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and sediment diffusion in river bedload (e.g., [16–19]). Specifically, ref. [16] introduced
a new conceptual model for the diffusion of moving-bed particles, which suggests that
particle motion is diffusive in nature and includes at least three ranges of temporal and
spatial scales characterized by different diffusion regimes. Later on, by means of particle
tracers, ref. [34] confirmed the diffusive nature of particle displacement in real gravel-bed
rivers and investigated gravel particle paths and their contribution to self-forming pro-
cesses, such as gravel bar development. Particle paths were found to be mostly bank-line
parallel, even in river bends. Additionally, transverse bedload was evaluated as 4% of
the longitudinal counterpart. Results from physical models of braided rivers (e.g., [24])
highlighted the influence of bars in acting as deposition sites for moving particles, with
over 80% of sediment tracers that were found at side, diagonal, and point bars. So far, very
few examples of analytical or semi-analytical treatment of sediment continuity equation
are available in the literature (e.g., [35]). In any case, none of these provides a solution
in terms of actual bed elevation function. A two-dimensional fully numerical model was
developed by [36] to simulate bar growth, channel widening, and scour holes at bar lee.
In the present study, we make a system of two-dimensional sediment mass balance and
a suitable constitutive relationship that relates dimensionless bedload rate and stream
power in the case of braided gravel beds at dynamical equilibrium. Such a relationship was
derived by the authors in a previous high-grain Reynolds numbers experimental study [3].
The crucial assumption enabling the analytical–numerical solution of the system in terms
of actual bed elevation function is represented by the recognition of the critical state of flow
along the braids and, as a consequence, by the equivalence of local section-average energy
loss and local section-average bed slope (e.g., [3,37–41]). Ten experiments were carried
out by [3] with fluvial gravel (D50 = 9 mm, D10 = 5 mm, and D90 = 13 mm) to analyze the
relationship between flow stream power and bedload transport rate in braided rivers at
high grain Reynolds numbers. The experimental runs were conducted in a rectangular,
1 m wide, and 16.7 m long flume with Plexiglas walls. The experimental device consisted
of a water re-circulating/sediment feeding system. Gravel was added from a 2.3 m long
sediment-supplying basin (located upstream of the flume and downstream of water inflow,
with imposed average bottom slope) by means of a sediment feeder mounted on a travel-
ling crane. The mixture of sediment and water coming from the supplying basin entered
the flume and modified its slope until the achievement of equilibrium conditions. The runs
differed from each other in terms of flow rate and initial slopes of flume and sediment-
supplying basin bottom. See Table 1 for a summary of the experimental conditions, where
S0 and Seq indicate initial and equilibrium flume bottom slopes, S0SB initial supplying basin
bottom slope, and teq the running time needed to achieve equilibrium.

Table 1. Summary of the experimental laboratory conditions for the derivation of the equilibrium
relationship between dimensionless bedload rate and stream power [3].

Run Q (m3/s) S0 S0SB Seq teq (h)

R1 0.0444 0.014 0.084 0.007 46
R2 0.031 0.013 0.067 0.012 167
R3 0.036 0.0135 0.067 0.011 168
R4 0.0254 0.027 0.0566 0.015 261
R5 0.0304 0.014 0.041 0.015 208
R6 0.040 0.01 0.0331 0.012 96
R7 0.045 0.0192 0.0491 0.009 144
R8 0.048 0.01 0.0331 0.011 197
R9 0.053 0.0104 0.032 0.01 261

R10 0.035 0.022 0.0145 0.015 72

The equilibrium grain Reynolds number, which ranged from 601 to 710, was consistent
with the condition of fully turbulent flow. Flow rates were measured by an electromagnetic
current meter located on the recirculation pipe. For every run, water surface and bed
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elevations were measured by a manual point gauge mounted on a travelling carriage at
55 flume and 10 supplying basin cross-sections on average. Each of the flume cross-sections,
which were spaced 30 cm apart, was monitored over time at 11 grid-points spaced 10 cm
apart, with 605 points surveyed at the different sampling times. Sampling times number
varied from 3 (R1) to 9 (R9), as a function of the total running time. As a consequence,
during each single run, the total number of bed and free surface elevation measurements
ranged from 1815 (for R1) to 5445 (for R9). Sediment flux at the flume inlet, which was
proportional to the imposed sediment supplying basin bottom slope and water discharge,
was estimated as the average volume of sediment eroded by water per unit time from the
sediment-supplying basin. The average bedload output rate of the flume was measured by
evaluating the cumulative weight of sediment conveyed into a flume downstream tank.
The achievement of equilibrium conditions was determined by verifying that input and
output bedload rates were equal and constant.

For each run, at equilibrium, section-averaged dimensionless unit bedload rate q∗bx
(where x indicates stream-wise direction, the over-bar indicates section-average and the
asterisk dimensionless quantities) was evaluated at flume scale (which is representa-
tive of a fluvial reach) as a function of the section-averaged dimensionless unit stream
power ω∗ [3]. Data were then analyzed and compared to those available from previous
laboratory [2,42–44] and field studies [1,45–47]. The analysis highlighted how different
combinations of grain Reynolds number and stream power range led to different types
of equilibrium correlation laws (linear or power). In particular, for high grain Reynolds
numbers (>601) and for ω∗ < 1, which are the conditions investigated in the present work
as typical field conditions, the experimental data could be well-interpreted by the following
power law:

q∗bx = 0.1ω∗2.02 (1)

Equation (1) was obtained by regression from our 10-run experimental laboratory data
and field data collected along 66 braided gravel-bed rivers all over the world.

As reported by [3], in the case of braided gravel-bed rivers at high grain Reynolds
numbers, Equation (1) estimates bedload transport rates more accurately than other for-
mulas previously appeared in the literature [2,48–50]. Data of water surface elevations
exhibited small oscillations about an average value during every run. Free surface oscil-
lations confirmed the establishment of local critical conditions in the braids, as expected
from the equilibrium Froude number of the experimental tests, which ranged between 1.15
and 1.33.

2. Methods

Let function η = η(x, y, t) represent bed elevation above a given reference level,
with y and t indicating cross-sectional coordinate and time counted from equilibrium,
respectively. We will proceed by subdividing η into section-average (η) and corresponding
deviation (η′):

η(x, y, t) = η(x, t) + η′(x, y, t) = a− i f eqx + N(x, t) + η′(x, y, t) (2)

In Equation (2) and in what follows, a indicates a constant, ifeq the reach-scale equilib-
rium bed slope, N the de-trended section-averaged bed profile (which reflects large-scale
bedforms, such as bars) and η′ accounts for small-scale bedforms, such as sediment waves
or sediment sheets. Additionally,

η(x, t) =
1
B

∫ B

0
η(x, y, t)dy (3)

where B indicates total bed width. Unit-width sediment continuity reads:

(1− p)
∂η

∂t
+∇·qb = s(x, y, t) (4)
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where p is sediment porosity, s indicates a source term (possibly attributable to slope or
tributary sediment inputs) and qb the bedload rate vector per unit channel width:

qb =
(

qbx, qby

)
(5)

with:
qbx = qbx(x, y, t) = qbx(x, t) + q′bx(x, y, t) (6)

and
qby = qby(x, y, t) ∼= q′by(x, y, t) (7)

Note that the hypothesis of negligible average transverse bedload and total transverse
bedload practically coinciding with its deviation, expressed by Equation (7), is consistent
with the experimental analysis carried out by [34], which highlighted how, in braided
rivers, transverse bedload is only a small percentage of the longitudinal counterpart. The
substitution of Equation (2) and Equations (5)–(7) into Equation (4) followed by section-
averaging yields:

(1− p)
∂N
∂t

+
∂qbx
∂x

= S(x, t) (8)

with:

S(x, t) =
1
B

∫ B

0
s(x, y, t)dy (9)

The difference of Equations (4) and (8) is:

(1− p)
∂η′

∂t
+

∂q′bx
∂x

+
∂q′by

∂y
= s′(x, y, t) (10)

where:
s′(x, y, t) = s(x, y, t)− S(x, t) (11)

As above summarized, from their previous laboratory experiment [3], the authors
had found that in braided gravel beds at high grain Reynolds numbers and river reach-
scale equilibrium:

q∗bx =
qbx√

g
(

$s−$
$

)
d3

∼= 0.1ω∗2 = 0.1
ω2

γ2g
(

$s−$
$

)
d3

(12)

where the average unit stream power is expressed by:

ω =
γQJ

B
(13)

In Equations (12) and (13) and in what follows, d indicates representative grain size,
Q flow rate, g acceleration due to gravity, ρ water density (with γ = ρg), ρs sediment
density, and j section-averaged energy loss. It is worth recalling here that the term “reach-
scale equilibrium” refers to a situation in which the input bedload rate to the reach is
equal to the output bedload rate from the reach, and the reach-scale bed trend slope is
equal to the reach-scale free surface slope. Since in braided gravel beds water flows in
critical conditions within each of the braids (e.g., [3,37–41], the corresponding section-
averaged specific energy Es, given by the sum of section-averaged kinetic energy U(x)2/2g
(with U(x) indicating section-averaged velocity) and section-averaged flow depth H(x), is
characterized by zero-mean longitudinal derivative (e.g., [51]):

dEs

dx
=

d
dx

[
H(x) +

U2(x)
2g

]
=

d
dH

[
H(x) +

Q2

2gb2H2(x)

]
dH
dx

=
(
1− Fr2)dH

dx
= 0 (14)
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where b indicates the equilibrium-constant total wetted width and Fr section-averaged
Froude number (Fr = U/

√
gH). In these conditions, section-averaged energy loss is

equal to section-averaged bed slope:

J = −∂E
∂x

= − ∂

∂x
(
η + Es

)
= −∂η

∂x
(15)

Therefore:
J = i f eq −

∂N
∂x

(16)

and

qbx = Γ
(

i f eq −
∂N
∂x

)2
(17)

with:

Γ = 0.1
Q2

B2

√
g
(

$s−$
$

)
d3

(18)

Note that values of j < 0 do not constitute a physical contradiction in terms of energy
valley-downstream variation because section-averaged bed elevation η does not have a
physical but just a mathematical meaning. The same value of η can be representative of
completely different transverse η-distributions. Water cannot be on top of bars and only
flows within highly meandering braids. Equation (12) may also be thought as deriving
from a formally analogous equation relating the actual (total) quantities:

q∗bx =
qbx + q′bx√
g
(

$s−$
$

)
d3

= 0.1
(ω + ω′)2

γ2g
(

$s−$
$

)
d3

(19)

In this case,

qbx = qbx + q′bx = Γ
(

i f eq − ∂N
∂x −

∂η′

∂x

)2
=

= Γ
(

i f eq − ∂N
∂x

)2
+ Γ

(
∂η′

∂x

)2
− 2Γ

(
i f eq − ∂N

∂x

)
∂η′

∂x

(20)

with qbx given by Equation (17) and

q′bx = Γ
(

∂η′

∂x

)2

− 2Γ
(

i f eq −
∂N
∂x

)
∂η′

∂x
(21)

By analogy, we will assume (and we will justify later) that:

q′by = Γ
(

∂η′

∂y

)2

− 2Γ
(

i f eq −
∂N
∂x

)
∂η′

∂y
(22)

Substitution of Equation (17) into Equation (8) and Equations (21) and (22) into
Equation (10), respectively, gives a variable-coefficient diffusion equation and a variable-
coefficient advection-diffusion equation with source terms:

∂N
∂t

=
2Γ
(

i f eq − ∂N
∂x

)
(1− p)

∂2N
∂x2 +

S(x, t)
(1− p)

(23)

and
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∂η′

∂t
+

[
2Γ

(1− p)
∂2N
∂x2

]
∂η′

∂x
=

=
2Γ

(1− p)

(
i f eq −

∂N
∂x
− ∂η′

∂x

)
∂2η′

∂x2 +
2Γ

(1− p)

(
i f eq −

∂N
∂x
− ∂η′

∂y

)
∂2η′

∂y2 +
s′(x, y, t)
(1− p)

(24)

Note that we are consistently using the term diffusion equation and advection-
diffusion equation for (23) and (24), respectively, because both N and η′ represent a length
proportional to the section-averaged or local concentration of sediment particles. A lin-
earization of Equations (23) and (24) will be achieved here by taking the reach-averaged
values of ∂N/∂x, ∂η′/∂x and ∂η′/∂y in the parentheses on their right-hand sides. The
reason for doing this is that, given the experimentally detected wave-like behavior of
functions N and η′, the parentheses on the right-hand side of Equations (23) and (24)
represent a sort of oscillatory diffusion coefficients, which can assume positive as well as
negative values depending on the sign of local and section-average bed slope. Considering
a generalized version of Fick’s law, “oscillatory diffusion coefficients” means that at small
(in the case of ∂N/∂x) and very small (in the case of ∂η′/∂x and ∂η′/∂y) scale, there is a
pseudo-periodical alternation of zones characterized by a net flux of sediment towards
higher concentrations and zones characterized by a net flux of sediment toward lower
concentrations, which overall creates a mutual compensation. Note that the same type
of compensation does not take place in the case of the oscillatory velocity

[
2Γ

(1−p)
∂2 N
∂x2

]
in

Equation (24), because advection moves the particles regardless of their local concentration.
Based on the experimental data collected during the experimental runs performed by [3]
and, as expected, due to the increasing frequency of decreasing-scale components of the
bed elevation function, it results that:

i f eq �
∂N
∂x R

� ∂η′

∂x R
,

∂η′

∂y R
(25)

where the over-bar and subscript R jointly indicate reach-average. As an example, in
the case of the reference run R4 (see Table 1), i f eq = 0.015, ∂N/∂xR = −0.002,
∂η′/∂yR = 1.538 × 10−4, ∂η′/∂xR = 1.446 × 10−19. The conditions expressed by Rela-
tionship (25) enabled the following approximation of Equations (23) and (24), respectively:

∂N
∂t

=
2Γi f eq

(1− p)
∂2N
∂x2 +

S(x, t)
(1− p)

(26)

and
∂η′

∂t
+

[
2Γ

(1− p)
∂2N
∂x2

]
∂η′

∂x
=

2Γi f eq

(1− p)

(
∂2η′

∂x2 +
∂2η′

∂y2

)
+

s′(x, y, t)
(1− p)

(27)

It should be emphasized that the linear (and, in the above perspective, leading) parts
of Equations (21) and (22) can respectively be re-written as:

q′bx = −2Γ
(

i f eq −
∂N
∂x

)
∂η′

∂x
= −0.2

Fr2

ε2
r

∂η′

∂x
τ∗b

√
g
(

$s − $

$

)
d3 (28)

and

q′by = −2Γ
(

i f eq −
∂N
∂x

)
∂η′

∂y
= −0.2

Fr2

ε2
r

∂η′

∂y
τ∗b

√
g
(

$s − $

$

)
d3 (29)

where τ∗b indicates dimensionless section-averaged bed shear-stress:

τ∗b =
ρH
(

i f eq − ∂N/∂x
)

(ρs − ρ)d
, (30)



Sustainability 2021, 13, 1246 7 of 23

and εr relative bed roughness (εr = d/H). Note also that Equation (29) is fully compatible
with that given in more general cases for mild secondary currents by [52] and later by [53],
when put in the form:

qsy = −αr
∂η

∂y
τ∗s

√
g
(

$s − $

$

)
d3 (31)

In Equation (31), α is a dimensionless constant (equal to 4.93 in the study by [53]), and
r is a coefficient given by the ratio of lift to drag forces. In Tealdi’s et al. model [53], qsy is
the cross-sectional bedload rate along the sloping and counter-sloping side-wall (with the
slope expressed by ∂η/∂y) and τ∗s the dimensionless shear-stress at the middle bank of a
trapezoidal cross-section. In the present model, τ∗b is obtained as a function of the section-
averaged flow depth, which is practically measured starting from the average braided-bed
level; additionally, q′by

∼= qby represents the (zero-mean) cross-sectional bedload rate along
the sloping and counter-sloping braid walls. Therefore, Equations (29) and (31) may be
considered as coinciding with α = 0.2 and r, which represents the hydrodynamical engine
of bedload transport, consistently given by the ratio of Froude number squared (a measure
of lifting potential magnitude) to relative bed roughness squared (a measure of drag
potential magnitude).

Equations (26) and (27) are two coupled partial differential equations. The first is a
diffusion equation with constant diffusion coefficient D = 2Γi f eq/(1− p) and space–time
dependent source term S(x, t)/(1− p). The second is an advection–diffusion equation
with constant diffusion coefficient D = 2Γi f eq/(1− p), space–time dependent velocity
v(x, t) = [2Γ/(1− p)]∂2N/∂x2 and space–time dependent source term s′(x, y, t)/(1− p).
Variable-coefficients advection–diffusion equations were already solved by the authors in
a stochastic framework in the case of river-flow transport of dissolved chemicals or fine
suspended sediments in the presence of stationary bed morphology heterogeneity [54–56].
In the present case, due to the intrinsically non-stationary nature of bed morphology
heterogeneity in braided rivers (e.g., [3]), no analytically treatable stochastic approach
could apply. Note that (26) and (27) jointly reproduce the diffusive nature of particle
displacement in gravel beds highlighted by [16] and later experimentally verified by [34] in
the case of real gravel-bed rivers. From (26) and (27), and in the absence of external forcing
(S(x, t) = 0, s′(x, y, t) = 0), one can write:

∂η′

∂t
+

[
2Γ

(1− p)
∂2N
∂x2

]
∂η′

∂x
=

∂η′

∂t
+

(
1

i f eq

∂N
∂t

)
∂η′

∂x
=

2Γi f eq

(1− p)

(
∂2η′

∂x2 +
∂2η′

∂y2

)
(32)

The meaning of Equation (32) is that, besides the isotropic diffusion undergone by the
small-scale bed undulations represented by η′, the latter experience upstream migration where
section-averaged bed elevation tends to decrease (∂N/i f eq∂t = [2Γ/(1− p)]∂2N/∂x2 < 0)
and downstream migration where the section-averaged bed elevation tends to increase
(∂N/i f eq∂t = [2Γ/(1− p)]∂2N/∂x2 > 0). As an elementary example, let us start from a
section-averaged bed elevation given by the superposition of the linear equilibrium trend
and a single cosine, which may mathematically represent local changes in bed elevation
induced by large-scale bedforms:

η(x, 0) = a− i f eqx + N(x, 0) = a− i f eqx + A cos
(πx

L

)
(33)

where A and L indicate initial wave height and initial wave half-length, respectively. From
Equation (26) with no source term, one obtains:

N(x, t) = Aexp
(
−π2D

L2 t
)

cos
(πx

L

)
(34)

where N = 0 (that is, at x = x0 = L/2), section-averaged bed elevation coincides with the
elevation obtainable from the only reach-scale trend: η(x0, t) = a− i f eqx0. For x < x0,
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N-profile is convex: ∂2N/∂x2 < 0 and the small-scale three-dimensional undulations
represented by η′ migrate upstream (v(x, t) < 0) with an exponentially decaying velocity;
conversely, for x > x0, N-profile is concave: ∂2N/∂x2 > 0 and the small-scale undulations
migrate downstream (v(x, t) > 0) at the same gradually decreasing rate. Note that the
convex N-profile is associated with N > 0 and η(x, t) > a− i f eqx; the vice versa holds for
the concave counterpart. Considering that the critical state of flow implies i f eq ≡ ic, where
ic indicates reach-scale critical bed slope, the quantity ηc = a− i f eqx may be assimilated
to the reach-scale critical bed elevation. In this case, hinging on basic hydraulics (e.g., [51]),
the condition η(x, t) > ηc (i.e., the condition of local section-averaged bed elevation larger
than the critical one) can be associated with a locally slow (sub-critical) sediment wave.
The vice versa can be said in the case of concave N-profile, which would turn out to be
associated with a locally fast (supercritical) sediment wave (Figure 1). Now, again from
basic hydraulics, we know that small perturbations (here represented by η′) typically go
upstream in the presence of sub-critical free-surface flows; conversely, they go downstream
in the presence of supercritical flows. Therefore, that result makes our model perfectly
compatible with a sediment-stream version of the classic gradually-varied flows theory.
Specifically, we know that the approximate integration of de Saint-Venant equations for
rectangular channel section [57]:

∂(UH)

∂x
+

∂H
∂t

= 0 (35)

∂H
∂x

+
U
g

∂U
∂x

+
1
g

∂U
∂t

= i f − J (36)

for i f
∼= J leads to:

dU
dH

= ±
√

g
H

(37)

and (
U ±

√
gH
)∂H

∂x
+

∂H
∂t

= 0 (38)

Figure 1. Schematic of small-scale sand-waves propagation direction domains.

Note that Equation (38) represents free-surface waves that propagate with celerity:

c = U ±
√

gH (39)

Therefore, for slow flows (U/
√

gH < 1) and dU/dH < 0, c < 0 and the perturbations
go upstream; on the other hand, for fast flows (U/

√
gH > 1) and dU/dH < 0, c > 0, and

the perturbations go downstream.
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3. Results

To solve system (26)–(27) showing that it can explain the tendency of real rivers to
maintain braiding under particular conditions and follow and monitor their evolution from
an equilibrium configuration to the other, we resorted to a mixed analytical–numerical
method. Specifically, we solved Equation (26) analytically for S(x,t) = 0 and an initial
condition represented by an oscillatory pseudo-periodic function that is qualitatively
consistent with our laboratory experimental observations [3]:

N(x, 0) = ∆

[
cos
(

2πx
Λ

)
− cos

(
2
√

3πx
Λ

)]
(40)

where ∆ indicates the amplitude and Λ the characteristic length-scale, obtaining:

N(x, t) = ∆

[
exp

(
−4π2D

Λ2 t
)

cos
(

2πx
Λ

)
− exp

(
−12π2D

Λ2 t
)

cos

(
2
√

3πx
Λ

)]
(41)

Then, we solved Equation (27) by particle-tracking (e.g., [58–61]) for s′(x, y, t) = 0 and:

η′(x, y, 0) = ξh(x)m(y) (42)

where ξ has the dimensions of a length, and h(x) and m(y) are two numerical coefficients
defined as:

h(x) =

{
1 0 ≤ x ≤ B
0 elsewhere

(43)

m(y) =

{
1 B

2 − β ≤ y ≤ B
2 + β

0 elsewhere
(44)

The reference macro-data set belongs to a river Basento reach (Basilicata region,
southern Italy, Figures 2 and 3) that can be considered as truly braided according to several
classification criteria [62–66]: B = 150 m, Q = 305 m3/s, ifeq = 0.01, p = 0.24, d = 0.045 m,
ρs = 2700 Kg/m3 and Fr = 1.09.

Figure 2. Basento river basin.
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Figure 3. Study-case reach of Basento river—from Google Earth (modified). The two transverse red
lines circumscribe the river reach under investigation. Their length is respectively proportional to
Bmin and Bmax. Wave-length Λ is roughly represented by bars’ average longitudinal dimension. Flow
direction is from left to right.

Additionally, we assumed ∆ = 1 m, ξ = 2d = 0.09 m, and β = d/2 = 0.0225 m. Therefore,
the initial bed elevation deviation turned out to be represented by a 9 cm-high double
array of sediment particles instantaneously placed about the channel axis between x = 0
and x = B = 150 m (total number of particles: 6667), with a consistently almost zero aver-
age deviation:

1
B

∫ B

0
η′(x, y, 0)dy =

2βξh(x)
B

=

{
2.7 x 10−5 0 ≤ x ≤ B

0 x < 0; x > B
(45)

Provided that the linear structure of (26) and (27) enables the superposition principle,
the aim of the present numerical experiment was to investigate how an elementary stream-
wise perturbation evolves toward different types of braided or unbraided configurations
as a function of the crucial ratio Λ/B. The application to real initial conditions will be the
object of future research, when evolving post reach-equilibrium DEMs (Digital Elevation
Models) will be available from the literature or our ongoing supplementary laboratory
experiments.

For particle-tracking purposes, the barycenter of each sediment particle was virtually
tracked based on the following discretized solution of the trajectory equation:

X(t + dt) = X(t) + v[X(t), t]dt +
√

2DdtG(0, 1) (46)

Y(t + dt) = Y(t) +
√

2DdtG(0, 1) (47)
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where X and Y, respectively, indicate the stream-wise and transverse component of the par-
ticle position vector, G (0,1) indicates a zero-mean and unit-variance Gaussian distribution,
dt is the elementary time step and:

v(x, t) =
[

2Γ
(1− p)

∂2N
∂x2

]
=

0.8Q2π2∆

B2Λ2(1− p)

√
g
(

$s − $

$

)
d3

·

[
3exp

(
−12π2D

Λ2 t
)

cos

(
2
√

3πx
Λ

)
− exp

(
−4π2D

Λ2 t
)

cos
(

2πx
Λ

)] (48)

D =
0.2Q2i f eq

B2(1− p)
√

g
(

$s−$
$

)
d3

(49)

The elementary time step was chosen in such a way as to limit the length of the
elementary purely diffusive displacement to a small percentage of channel total width:

dt =
dn2

D
(50)

with:
dn =

B
2000

(51)

When a particle overcame a side boundary (representing the impervious bank), it
was back-reflected by |dY| =

√
2Ddt2G(0, 1), where dt2 = dt− dt1 and dt1 was the time

needed to reach the boundary itself. Note that, during dt2, the particle was not allowed to
move along the longitudinal direction. It should be emphasized that, although our particle-
tracking is 2-D in the horizontal projection of the channel plan view, the effect of lift and
drag is inherent in the velocity and diffusion coefficient of the advection–diffusion equation
that it solves. There are in the literature a few examples of 3D particle tracking applied to
the study of saltating particles diffusion in turbulent water flow in more general conditions
(e.g., [67]). The peculiarity of our study consists in the specific and more restricted field
of application (braided gravel beds) and in the analytical nature of the model, allowed
by the combination of the high grain Reynolds numbers quadratic relationship between
dimensionless unit bedload rate and stream power and the typical critical state of flow,
which determines the way the stream power is evaluated. Figure 4 shows the velocity
distribution sampled for Λ = B/8 by the double sediment array at t = t0 and t = τd, with:

τd =
Λ2

4π2D
(52)

representing a characteristic diffusive time (i.e., the time needed by pure diffusion to
cover a distance proportional to Λ). Figure 5 shows the solution of Equation (27) in terms
of particles’ barycenter position at t = τd. Finally, Figure 6 shows the corresponding X-
histogram. As one can see, the high-frequency oscillations of velocity induce a marked
fragmentation of the initial sediment strip and a relatively reduced diffusion. The histogram
displaying X-frequency (f ) distribution exhibits an almost two-peaked shape with a central
minimum. Figures 7–9 show the same as Figures 4–6 but referred to Λ = B/4. In this case,
the initial velocity was less oscillating and overall characterized by a smaller magnitude.
The number of sediment accumulation sites was reduced while their dimensions were
increased due to the gradual transition from advective to diffusive regime. The X-histogram
revealed a multi-peaked structure with higher concentrations of sediment in a lower
number of longitudinal bands. Figures 10–12 refer to Λ = B/2. The initial velocity was
now rather low and only weakly oscillating. The corresponding particles’ distribution after
the actual τd highlights the formation of three well-defined sediment accumulation sites
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in about 190 m, associated with three histogram peak zones. Note that the case-study in
Figure 3, which represents a clearly braided branch of river Basento, and was characterized
by Λ/B ∼= 1/2, include three large bars in about 220 m. The case Λ = B (Figures 13–15) was
the first characterized by a monotonic initially sampled velocity. From Figure 14, one can
appreciate the dominant effect of diffusion (many sediment particles had already reached
the boundaries at t = τd) with considerable back-displacements (X < 0) and the slow
transformation of the bed configuration into a two-dimensional sand–waves pattern. This
tendency finds its maximum expression for Λ = 2B (Figures 16–18), with channel width that
is now almost uniformly occupied by sediment particles and the X-histogram that is rather
close to a (skewed) Gaussian distribution, as in Taylor-like diffusion. Since the numerical
experiments were conducted with the same B, Q, ifeq, ρs, p, and d and, therefore, with
the same diffusion coefficient D, we can conclude that the tendency to maintain braiding
and flow bifurcation is associated with equilibrium average bed profiles N and, therefore,
equilibrium average stream power γQ

(
i f eq − ∂N/∂x

)
characterized by maximum period

Λ that does not exceed transverse channel dimension.

Figure 4. Velocity sampled by the sediment strip at t = t0 (full line) and t = τd (dotted line) for
Λ = B/8.

Figure 5. Particles distribution at t = τd for Λ = B/8.
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Figure 6. Histogram of particles longitudinal position at t = τd for Λ = B/8.

Figure 7. Velocity sampled by the sediment strip at t = t0 (full line) and t = τd (dotted line) for
Λ = B/4.

Figure 8. Particles distribution at t = τd for Λ = B/4.
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Figure 9. Histogram of particles longitudinal position at t = τd for Λ = B/4.

Figure 10. Velocity sampled by the sediment strip at t = t0 (full line) and t = τd (dotted line) for
Λ = B/2.

Figure 11. Particles distribution at t = τd for Λ = B/2.
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Figure 12. Histogram of particles longitudinal position at t = τd for Λ = B/2.

Figure 13. Velocity sampled by the sediment strip at t = t0 (full line) and t = τd (dotted line) for Λ = B.

Figure 14. Particles distribution at t = τd for Λ = B.
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Figure 15. Histogram of particles longitudinal position at t = τd for Λ = B.

Figure 16. Velocity sampled by the sediment strip at t = t0 (full line) and t = τd (dotted line) for
Λ = 2B.

Figure 17. Particles distribution at t = τd for Λ = 2B.
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Figure 18. Histogram of particles longitudinal position at t = τd for Λ = 2B.

Finally, in Table 2, we summarize the main numerical parameters and results: the ratio
Λ/B, the diffusion time τd, the Péclet number Pe = Λvmax/D—which is representative of
the relative importance of advection and diffusion—and the braiding index BI, which was
defined as the ratio of channel length occupied by sediment particles at t = τd to velocity
characteristic length Λ. As one can see, the smaller the ratio Λ/B, the smaller the time
needed for diffusion over Λ (τd), the larger Pe and the larger BI.

Table 2. Summary of numerical simulations characteristic parameters. In red the output
(Braiding Index).

Run Λ/B τd (s) Pe BI

R1 1/8 32.74 210.52 8.8
R2 1/4 130.96 105.33 4.5
R3 1/2 523.83 52.67 2.8
R4 1 2095.34 26.47 2.3
R5 2 8381.35 13.24 1.8

For the sake of completeness, and to analyze the free evolution of the equilibrium
section-averaged bed profile, Figures 19–23 show N(x) at t = t0 and t = τd for Λ = B/8,
Λ = B/4, Λ = B/2, Λ = B and Λ = 2B, respectively. As one can see, due to the specific
structure of (26), the pseudo-periodic behavior of the initial distribution tends to approach a
perfectly periodic (other than considerably attenuated and characterized by lower frequency)
oscillation, which is in turn affecting the local deviation evolution shown in the previous figures.

Figure 19. De-trended section-averaged bed profile at t = t0 (full line) and t = τd (dotted line) for Λ = B/8.
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Figure 20. De-trended section-averaged bed profile at t = t0 (full line) and t = τd (dotted line) for
Λ = B/4.

Figure 21. De-trended section-averaged bed profile at t = t0 (full line) and t = τd (dotted line) for
Λ = B/2.

Figure 22. De-trended section-averaged bed profile at t = t0 (full line) and t = τd (dotted line) for
Λ = B.
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Figure 23. De-trended section-averaged bed profile at t = t0 (full line) and t = τd (dotted line) for
Λ = 2B.

4. Discussion and Conclusions

In the present study, we propose an analytical–numerical methodology for the recon-
struction of the equilibrium dynamics of gravel braided beds. The mathematical model
is based on the combination of sediment continuity with or without forcing term and
the practically quadratic relationship between dimensionless unit bedload rate and di-
mensionless unit stream power, which was derived by the authors in a previous work
by regression, including ad hoc laboratory experimental measurements performed at
high grain Reynolds numbers and real river data available in the literature. The crucial
assumption enabling a semi-analytical solution in terms of bed elevation function was rep-
resented by the recognition of the critical state of flow, widely documented in the literature,
which makes local section-averaged energy loss coinciding with local section-averaged bed
slope. The first important result of the study is represented by the specific structure of the
bed elevation deviation governing equation, coupled with a variable-coefficient diffusion
equation holding for the section-average component. Note that the diffusive nature of
sediment transport had already been highlighted by previous experimental investigations.
A partial simplification of the two coupled differential equations was achieved in terms
of diffusion coefficient, which was found to be proportional to the sum of reach-scale bed
slope, section-averaged bed slope, and deviatory bed slope. As a matter of fact, due to
the pseudo-periodical oscillation of section-averaged bed elevation and corresponding
deviation, which was experimentally verified, the diffusion coefficients practically include
terms that determine a mutual compensation of mass transfer from higher to lower con-
centrations of sediment and vice versa. For that reason, the dependence of these diffusion
coefficients on the oscillatory part of the bed elevation function was neglected, and the only
dependence on the constant reach-scale bed slope was maintained. A second important
result, which basically proves the consistency of the present mathematical formulation, is
represented by the direction of the small-scale bed forms migration according to the local
section-averaged bed curvature. Specifically, where the section-averaged bed is convex,
sub-critical bed waves would move upstream; conversely, where the section-averaged
bed is concave, super-critical bed waves would migrate downstream. This conclusion is
fully compatible with classic hydraulics and gradually-varied flows theory. The system
of coupled equations that govern section-averaged bed elevation and corresponding de-
viation was analytically–numerically solved for a set of macro-data belonging to a real
truly braided river reach of southern Italy, assuming an initially pseudo-periodical section-
averaged bed. The advection–diffusion equation governing the bed elevation deviation
was solved by particle-tracking, based on the constant diffusion coefficient and the velocity
values locally sampled by each sediment particle, with an initial condition represented by
a central double array of stones. The solution was plotted in terms of particles’ barycenter
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position and corresponding histogram after a characteristic diffusive time, for five different
values of the ratio of (initial) longitudinal macro-bedforms maximum period to channel
maximum width. The results indicate that the smaller the ratio, the more accentuated
the tendency of the river to maintain the braided bed structure, with the formation of
smaller and highly concentrated sediment heaps whose number is proportional to the
frequency of the oscillatory section-averaged bed profile. Conversely, when the ratio is
large (specifically, larger than 1), bed dynamics tends to approach a Taylor-like dispersive
process (e.g., [68]) with asymmetric tails (e.g., [69]). This result means that the initial distur-
bance being the same, the longitudinally smoother the equilibrium braided bed (longer
macro-bedforms or bars), the more marked the diffusive nature of transport, with the
displacement of particles in all directions that are only bounded by river valley side bound-
aries. Conversely, the longitudinally more heterogeneous the equilibrium section-averaged
bed (shorter macro-bedforms or bars), the more marked the advective nature of trans-
port, with mainly longitudinal particle displacement and sediment mass fragmentation.
The physical explanation for this behavior is that lower-frequency section-averaged bed
waves are associated with lower-amplitude advective particle displacements and, therefore,
relatively more intense diffusion. Finally, it should be noted that the system of coupled
differential equations derived in the present study may easily be utilized (eventually in
its complete version (23)–(24)) for a finite-differences/elements solution, starting from
the real DEM of the river bed at t = 0. As a matter of fact, it is widely recognized that
human-induced factors, such as embankments, roads, bridges, and dams construction,
can affect sediment transport and bed morphology of the regulated river [70–72], and can
critically impact on location and extent of gravel bars [73], which are important natural
structures for fluvial or riparian habitats and, therefore, for the protection and conservation
of species of fishes, invertebrates, plants, and birds [74–76]. Several fish species live in
braided rivers, and their connected wetlands and gravel bed grounds constitute suitable
spawning areas. Additionally, in many cases, gravel bars represent an important substrate
for the establishment and development of ground flora and woody vegetation and guaran-
tee higher plant diversity [77]. Sustainable management of braided rivers should, therefore,
ensure their ecological potential and biodiversity by preserving braiding structure over
time [1]. The analytical–numerical solution proposed by the present study, which models
gravel braided bed evolution from an equilibrium configuration to the other for imposed
flow and bedload rate, may, therefore, be applied for the analysis of the impact of fluvial
engineering works on river habitat and its biotic components, as well as for the planning
and the monitoring of sustainable river restoration.
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