Beltrami equation $overline{L}_t (g) = mu( cdot , t) L_t (g)$ on $S^3$ (where $L_t$, $t in (-1,1)$, are the Rossi operators i.e., $L_t$ spans the globally nonembeddable CR structure $mathcal{H} (t)$ on $S^3$ discovered by H. Rossi) are derived such that to describe quasiconformal mappings $f: S^3 to N subset mathbb{C}^2$ from the Rossi sphere $(S^3 , mathcal{H} (t))$. Using the Greiner-Kohn-Stein solution to the Lewy equation and the Bargmann representations of the Heisenberg group, we solve the Beltrami equations for Sobolev-type solutions $g_t$ such that $g_t - v in W^{1,2}_F (S^3, theta)$ with $v in CR^infty (S^3 , mathcal{H} (0))$.

Beltrami equations on Rossi spheres

Elisabetta Barletta;Sorin Dragomir
;
Francesco Esposito
2022-01-01

Abstract

Beltrami equation $overline{L}_t (g) = mu( cdot , t) L_t (g)$ on $S^3$ (where $L_t$, $t in (-1,1)$, are the Rossi operators i.e., $L_t$ spans the globally nonembeddable CR structure $mathcal{H} (t)$ on $S^3$ discovered by H. Rossi) are derived such that to describe quasiconformal mappings $f: S^3 to N subset mathbb{C}^2$ from the Rossi sphere $(S^3 , mathcal{H} (t))$. Using the Greiner-Kohn-Stein solution to the Lewy equation and the Bargmann representations of the Heisenberg group, we solve the Beltrami equations for Sobolev-type solutions $g_t$ such that $g_t - v in W^{1,2}_F (S^3, theta)$ with $v in CR^infty (S^3 , mathcal{H} (0))$.
2022
File in questo prodotto:
File Dimensione Formato  
Beltrami equations on Rossi spheres.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 462.94 kB
Formato Adobe PDF
462.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/153789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact