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Abstract: Beltrami equations Lt(g) = µ( · , t) Lt(g) on S3 (where Lt, |t| < 1, are the Rossi operators
i.e., Lt spans the globally nonembeddable CR structureH(t) on S3 discovered by H. Rossi) are derived
such that to describe quasiconformal mappings f : S3 → N ⊂ C2 from the Rossi sphere

(
S3 , H(t)

)
.

Using the Greiner–Kohn–Stein solution to the Lewy equation and the Bargmann representations
of the Heisenberg group, we solve the Beltrami equations for Sobolev-type solutions gt such that
gt − v ∈W1,2

F
(
S3, θ

)
with v ∈ CR∞(S3,H(0)

)
.

Keywords: CR manifold; Tanaka–Webster connection; Fefferman metric; Lewy operator; Heisenberg
group; quasiconformal map; Beltrami equation; Rossi sphere; Bargmann representation; Fourier transform

1. Introduction and Statement of Main Result

Let M be a 3-dimensional nondegenerate CR manifold, equipped with the CR structure
H. The global CR embedding problem for M is to find a nondegenerate real hypersurface
N ⊂ C2 and a CR isomorphism of (M, H) onto (N, T1,0(N)), where

T1,0(N) =
[
T(N)⊗C

]
∩ T1,0(C2)

is the CR structure on N induced by the complex structure on C2. H. Rossi has produced
(cf. [1]) a 1-parameter family

{
H(t)

}
|t|<1 of strictly pseudoconvex CR structures on the

sphere S3 such that none of the CR manifolds
(
S3,H(t)

)
, t 6= 0 (the Rossi spheres) is globally

embeddable (cf. also D.M. Burns [2]). One of the purposes of the present paper is to start
studying a natural weakening of the global CR embedding problem, seeking for an at least
K-quasiconformal mapping from M onto N. The problem is specialized to

(M, H) ∈
{(

S3 , H(t)
)

: |t| < 1
}

.

A quasiconformal mapping f =
(

f 1 , f 2) : S3 → N (in the sense of A. Koranyi and
H.M. Reimann [3]) is in particular a contact transformation of positive dilation λ( f ) > 0,
and then a vector bundle morphism µ f (t) = µ

(
f , H(t)

)
: H(t)→ H(t) (the complex dilation

of f ) may be built such that quasiconformality is characterized by the Beltrami equations

Lt
(

f j) = µ
(
· , t) Lt

(
f j), j ∈ {1, 2}, |t| < 1, (1)

where the functions µ
(
· , t
)

: S3 → C are determined by

µ f (t) Lt = µ
(
· , t) Lt ,

Lt = Z + t Z , Z = w
∂

∂z
− z

∂

∂w
.
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Building on an idea by C-Y. Hsiao and P-L. Yung (cf. [4]) we use the canonical CR
isomorphism (induced by the Cayley map) H : U = S3 \ {(0, −1)} ≈ H1 to transform the
Beltrami Equation (1) into

u V( f ) =
λ( · , t)− t

1− t λ( · , t)
u V( f ), (2)

u(ζ, t) =
1
2

(
|ζ|2 − i τ + 1

)2

|ζ|2 + i τ + 1
, (ζ, τ) ∈ H1 ,

λ(x, t) = µ
(

H−1(x), t
)
, x ∈ H1 , |t| < 1,

where V ≡ ∂

∂ζ
+ i ζ

∂

∂τ
(so that V is the unsolvable Lewy operator). Our main result is as

follows.

Theorem 1. Let
{

µ
(
· , t
)}
|t|<1 be a smooth 1-parameter family of measurable functions µ

(
· , t
)

:

S3 → C of compact support

Supp
[
µ( · , t)

]
⊂ S3 \ {(0, −1)}, |t| < 1,

such that ∥∥µ( · , t)
∥∥

∞ = ess supp∈S3

∣∣µ(p, t)
∣∣ < 1− |t|

√
2√

2 + |t|
.

Let v ∈ CR∞(S3) be a CR function [i.e., Z(v) = 0]. Let us set

α(x, t) =
λ(x, t)− t

1− t λ(x, t)

[
u(x)
|u(x)|

]2

, x ∈ H1 , |t| < 1.

If one of the following conditions holds,

(i) α( · , t) ∈ L2
+

(
H1 , θ0

)
, α( · , t)V

(
v ◦ H−1) ∈ L2

+

(
H1 , θ0

)
,

(ii) α( · , t) ∈ D−2 , α( · , t)V
(
v ◦ H−1) ∈ D−1,

(iii) α( · , t) ∈ D−2 ∩ L2
−
(
H1 , θ0

)
, α( · , t)V

(
v ◦ H−1) ∈ D−1 ∩ L2

−
(
H1 , θ0

)
,

then the Beltrami Equation (2) has a unique solution ft such that ft − v ◦ H−1 ∈ W1,2
E
(
H1 , θ0

)
.

Consequently gt = ft ◦ H is a solution to

Lt
(

g) = µ
(
· , t
)

Lt(g) (3)

such that gt − v ∈W1,2
F
(
U, θ

)
.

Here the spaces L2
±
(
H1 , θ0

)
⊂ L2(H1 , θ0

)
are

L2
−
(
H1 , θ0

)
=
{

f ∈ L2(H1 , θ0
)

: f̂ (λ) = 0 a.e. λ > 0
}

,

L2
+

(
H1 , θ0

)
= L2(H1 , θ0

)
	 L2

−
(
H1 , θ0

)
,

and f̂ (λ) is the Fourier transform of f at λ ∈ R \ {0}. The meaning of the sets {Dj}j∈Z will
be explained in Section 3.

The paper is organized as follows.
Section 2.1 is devoted to pseudohermitian geometry on a Rossi sphere

(
S3 , H(t)

)
. We

show that Rossi’s CR structures
{
H(t) : |t| < 1} have the same Levi distribution (i.e., the

maximally complex distribution associated to the standard CR structureH(0) = T1,0(S3))
and, therefore, the same contact forms. We compute the pseudohermitian geometric objects
of interest (the Tanaka–Webster connection, Fefferman’s metric, etc.) of a Rossi sphere
endowed with the canonical contact form θ = i

2
(
z dz + w dw− z dz− w dw

)
.
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Section 2.2 discusses the Folland–Stein spaces

W1,2
H
(

M, θ), W1,2
E
(
U, ι∗θ),

on a strictly pseudoconvex CR manifold
(

M, T1,0(M)
)
, equipped with the positively

oriented contact form θ, and E = {Ea : 1 ≤ a ≤ 2n} is a Gθ-orthonormal (local)
frame of the Levi distribution H(M) = Re

{
T1,0(M) ⊕ T0,1(M)

}
, defined on the open

set ι : U ⊂ M. If U is also the domain of a local coordinate neighborhood χ : U → R2n+1,
then X ≡

{
χ∗Ea : 1 ≤ a ≤ 2n} is a Hörmander system of vector fields on Ω = χ(U) (e.g.,

in the sense of [5]) and W1,2
E (U, θ) are essentially the Sobolev-type spaces W1,2

X
(
Ω
)

(e.g.,
in [6,7]). Our Theorem 2 in this section accounts for the fact that solving (3) in W1,2

F
(
S3 , θ

)
is the same as solving (2) in W1,2

E
(
H1 , θ0

)
.

Section 2.3 discusses the basic differential geometric facts on quasiconformal maps
of 3-dimensional nondegenerate CR manifolds and gives a proof of a characterization of
K-quasiconformality due to A. Koranyi and H.M. Reimann (cf. [3]) yet proved by them
only for the Heisenberg group.

In Section 2.4, we derive the Beltrami equations, describing quasiconformal maps of
the Rossi sphere

(
S3 , H(t)

)
into a real hypersurface N ⊂ C2.

Section 3 collects the needed tools of harmonic analysis (e.g., the Bargmann represen-
tations of the Heisenberg group H1, the corresponding Fourier transform of f ∈ S

(
H1
)
,

and the orthogonal decomposition L2(H1 , θ0
)
=
⊕

k∈Z Uk) and complex analysis (e.g., the
solution to the inhomogeneous tangential Cauchy–Riemann equations V( f ) = g on H1)
and provides the proof to Theorem 1.

2. Rossi’s Spheres
2.1. CR Structures, Levi Form, Tanaka–Webster Connection

We review a few notations, conventions and basic results in Cauchy–Riemann and
pseudohermitian geometry, by mainly following the monograph [8].

2.1.1. CR Manifolds, Pseudohermitian Structures

Let M be a 3-dimensional, orientable, C∞ manifold. A CR structure on M is a complex
line subbundleH ⊂ T(M)⊗C such that

Hx ∩Hx = (0), x ∈ M.

The tangential Cauchy–Riemann operator is the first order differential operator

∂H : C1(M, C
)
→ C

(
H ∗
)
,(

∂Hv
)
W = W(v), v ∈ C1(M, C), W ∈ H.

A CR function on M is a C1 solution v to the tangential CR equations ∂Hv = 0. Let
CRk(M, H) be the space of all CR functions of class Ck, k ≥ 1.

Let H(M) = Re
{
H⊕H

}
be the Levi distribution. It carries the complex structure

J : H(M)→ H(M), J(Z + Z) = i(Z− Z), Z ∈ H,

(with i =
√
−1). The conormal bundle is the real line subbundle H(M)⊥ ⊂ T∗(M) given by

H(M)⊥x =
{

ω ∈ T∗x (M) : Ker(ω) ⊃ Hx
}

, x ∈ M.

The conormal bundle is trivial (i.e., H(M)⊥ ≈ M×R, a vector bundle isomorphism),
and hence it admits globally defined nowhere zero C∞ sections θ, each of which is referred
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to as a pseudohermitian structure on M. Let P = P(M, H) be the set of all pseudohermitian
structures on M. For every θ ∈ P , the Levi form Gθ is

Gθ(X, Y) = (dθ)(X, JY), X, Y ∈ H(M).

The CR structure H is nondegenerate if the Levi form Gθ is nondegenerate (i.e.,
Gθ(X, Y) = 0 for every Y ∈ H(M) yields X = 0) for some θ ∈ P . If H is nondegener-
ate, then every θ ∈ P is a contact form, i.e., Ψ = θ ∧ dθ is a volume form on M, and P
splits into two orientation classes P± = P±(M, H). A contact form θ ∈ P+ is positively
oriented (the Levi form Gθ is positive definite). For every θ ∈ P+, the Webster metric is the
Riemannian metric determined by

gθ(X, Y) = Gθ(X, Y), gθ(X, T) = 0, gθ(T, T) = 1,

for any X, Y ∈ H(M).

2.1.2. Tanaka–Webster Connection, Canonical Circle Bundle, Fefferman’s Metric

The Tanaka–Webster connection of (M, θ) is the linear connection ∇ on M uniquely
determined by the following axioms: (i) H(M) is parallel with respect to ∇ i.e., ∇YX ∈
H(M) for any X ∈ H(M) and any Y ∈ X(M), (ii) the complex structure J along H(M)
and the Webster metric gθ are parallel with respect to ∇ i.e., ∇J = 0 and ∇gθ = 0, (iii) the
torsion T∇ is pure, i.e.,

T∇
(
Z, W

)
= 0, T∇

(
Z, W

)
= 2i Gθ

(
Z, W

)
T,

τ ◦ J + J ◦ τ = 0, τ(Y) ≡ T∇(T, Y),

Z, W ∈ H, Y ∈ X(M).

τ is the pseudohermitian torsion of the Tanaka–Webster connection ∇. By a result of S.M.
Webster (cf., for example, [8]), τ is self-adjoint (i.e., gθ

(
τ X, Y

)
= gθ

(
X, τ Y

)
) and τ

(
H
)
⊂

H (in particular, τ is traceless, i.e., trace(τ) = 0).
For every C1 vector field X on M, the divergence of X is determined by LXΨ =

div(X)Ψ where LX denotes the Lie derivative at X. The divergence of a vector field is most
easily calculated as the trace of the covariant derivative, with respect to the Tanaka–Webster
connection ∇. Indeed (by axiom (ii) above), ∇Ψ = 0, and hence,

div
(
X
)
= trace

{
Y 7−→ ∇YX

}
.

A complex valued p-form η ∈ Ωp(M) = C∞(ΛpT∗(M)⊗C
)

is a (p, 0)-form ifHc η =
0. Let Λp,0(M)→ M be the relevant vector bundle (so that Ωp,0(M) = C∞(Λp,0(M)

)
is the

space of all (p, 0)-forms on M). Then K(M, H) = Λn+1,0(M) is a complex line bundle (the
canonical bundle over M). R+ = GL+(1, R) (the multiplicative positive reals) acts freely
on K0(M, H) = K(M, H) \ {zero section}, thus organizing the quotient space C(M, H) =

K0(M, H)
/
R+ as the total space of a principal circle bundle S1 → C(M, H)

π→ M. If
ω ∈ K(M, H)x with ω 6= 0 then

[
ω
]
∈ C

(
M, H

)
x denotes the class of ω mod R+. Let us

assume that (M, H) is strictly pseudoconvex and let θ ∈ P+(M, H). Let {Tα : 1 ≤ α ≤
n} ⊂ C∞(U, H

)
be a local frame ofH, defined on the open subset U ⊂ M. Let T ∈ X(M)

be the Reeb vector field of (M, θ). Let {θα : 1 ≤ α ≤ n} be the complex 1-forms on U
determined by

θα
(
Tβ

)
= δα

β , θα
(
Tβ

)
= 0, θα

(
T
)
= 0.

{θα : 1 ≤ α ≤ n} is an admissible coframe. Then

ω = λ
(
θ ∧ θ1 ∧ · · · ∧ θn)

x
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for some λ ∈ C \ {0}. A local trivialization chart of C(M, H) is

Φ : π−1(U)→ U × S1 , Φ
(
[ω]
)
=
(

x,
λ

|λ|

)
.

The Fefferman metric is the Lorentzian metric Fθ ∈ Lor
[
C(M, H)

]
given by (cf. [8]

pp. 128–129)
Fθ = π∗ G̃θ + 2

(
π∗θ

)
� σ , (4)

where
σ =

1
n + 2

{
ds + π∗

(
i ωα

α − i
2

gαβ dgαβ −
R

4(n + 1)
θ
)}

(5)

a connection 1-form on the principal bundle S1 → C(M, H) → M (the Graham con-
nection, cf. [9]). As to the notation in (4) and (5), the (degenerate) (0, 2)-tensor field G̃θ

extends the Levi form Gθ to the whole of T(M) by requesting that G̃θ(T, W) = 0 for any
W ∈ X(M) (and G̃θ = Gθ on H(M)⊗ H(M)). Additionally, s is a local fiber coordinate on
C(M, H) [a detailed description of s for (M, H) =

(
S3 , H(t)

)
(a Rossi sphere) is given in

Section 2.1.5]. Moreover,

gαβ = Gθ

(
Tα , Tβ

)
,
[
gαβ
]
=
[
gαβ

]
,

∇Tα = ωα
β Tβ , R = gαβ Rαβ ,

and Rαβ is the pseudohermitian Ricci tensor (cf. [8], p. 50).

2.1.3. Heisenberg Group, Rossi Spheres

Let H1 = C×R be the Heisenberg group, with the group law

(z, t) · (ζ, τ) =
(
z + ζ, t + τ + 2 Im

(
zζ
))

,

for any z, ζ ∈ C and t, τ ∈ R. The complex vector field V = ∂/∂ζ + i ζ ∂/∂τ spans the
left invariant CR structure Hx = CVx, with x ∈ H1. Here, V is the Lewy operator and the
tangential CR equations on H1 are V(F) = 0. For instance, if F(ζ, τ) =

∣∣ζ∣∣2 − i τ, then
F ∈ CR∞(H1 , H

)
.

Let S3 =
{(

z, w
)
∈ C2 : zz + ww = 1

}
be the standard sphere. The CR structure

T1,0
(
S3) = [T(S3)⊗C

]
∩ T1,0(C2)

(the canonical CR structure on S3) is the span of T1 = w ∂/∂z− z ∂/∂w. Let H(S3) be the
Levi distribution of the CR manifold

(
S3 , T1,0(S3)

)
. Let us set

Lt = T1 + t T1 , |t| < 1, (6)

H(t)x =
{

λ Lt, x : λ ∈ C
}

, x ∈ S3 .

Here, T1 = T1. Then, we have the following:

(i) H(t) is a nondegenerate CR structure on S3 [such thatH(0) = T1,0(S3)].
(ii) The Levi distributions of

(
S3 , H(t)

)
and

(
S3 , T1,0(S3)

)
coincide, i.e.,

Re
{
H(t)⊕H(t)

}
= H(S3), |t| < 1.

(iii) The CR manifolds
(
S3 , H(t)

)
have the same positively oriented contact forms, i.e.,

P+
(
S3 , H(t)

)
= P+

(
S3 , T1,0(S3)

)
.
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To prove (i)–(iii), we need some preparation. Let us consider the (real valued) differen-
tial 1-form θ ∈ Ω1(S3) given by

θ = j∗
[ i

2
(
z dz + w dw− z dz− w dw

)]
(7)

(with j : S3 ⊂ C2). Then, we have the following:

Step 1. θ ∈ P+
[
S3 , T1,0(S3)

]
, i.e., θ is a positively oriented contact form on S3 with respect

to the ordinary CR structure T1,0(S3).

Proof. For simplicity, we drop j. Then

dθ = i
(
dz ∧ dz + dw ∧ dw

)
and the Levi form Gθ is

Gθ

(
T1 , T1

)
= −i (d θ)

(
T1 , T1

)
=
(
dz ∧ dz

)(
T1 , T1

)
+
(
dw ∧ dw

)(
T1 , T1

)
=

=
1
2

{∣∣dz
(
T1
)∣∣2 + ∣∣dw

(
T1
)∣∣2} =

1
2
{
|z|2 + |w|2

}
=

1
2
> 0.

θ is referred to as the canonical contact form on S3. The Reeb vector field of
(
S3 , θ

)
is

the nowhere zero globally defined vector field T ∈ X
(
S3) determined by θ(T) = 1 and

T c dθ = 0.

Step 2. The Reeb vector field T of (S3 , θ) is given by

T = i
(

z
∂

∂z
+ w

∂

∂w
− z

∂

∂z
− w

∂

∂w

)
.

An adapted coframe is a frame {θ1} in T1,0(S3)∗ such that

θ1(T1
)
= 1, θ1(T1

)
= 0, θ1(T) = 0.

Step 3. θ1 = w dz− z dw is an adapted coframe on (S3 , θ).

We may now complete the proof of (i)–(iii). The complex distribution H(t)⊕H(t)
is the span of {Lt , Lt} and then [by (6)] the span of {T1 , T1}. Hence, the CR manifolds{(

S3 , H(t)
)}
|t|<1 have the same Levi distribution (i.e., H

(
S3) = Re

{
H(t)⊕H(t)

}
) and

therefore, the same pseudohermitian structures (i.e., P
(
S3 , T1,0(S3)

)
= P

(
S3 , H(t)

)
).

Step 4. The Levi form of
(
S3 , H(t)

)
Gt

θ

(
X , Y

)
= (dθ)

(
X, JtY

)
, X, Y ∈ H(S3),

Jt : H(S3)→ H(S3), Jt(Z + Z
)
= i
(
Z− Z

)
, Z ∈ H(t),

is given by

Gt
θ

(
Lt , Lt

)
=

1− t2

2
> 0. (8)

Proof. Indeed,
Gt

θ

(
Lt , Lt

)
=

[as JtLt = i Lt and JtLt = −i Lt]

= −i (dθ)
(

Lt , Lt
)
=
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=
1
2

{∣∣dz
(

Lt
)∣∣2 − ∣∣dz

(
Lt
)∣∣2 + ∣∣dw

(
Lt
)∣∣2 − ∣∣dw

(
Lt
)∣∣2} =

=
1− t2

2
(
|z|2 + |w|2

)
=

1− t2

2
> 0

proving that θ ∈ P+
(
S3 , H(t)

)
and then

P+
(
S3 , H(t)

)
= P+

(
S3 , H(0)

)
.

2.1.4. Tanaka–Webster Connection of a Rossi Sphere

We shall need the following commutation table[
T, T1

]
= −2i T1 ,

[
T, T1

]
= 2i T1 ,

[
T1 , T1

]
= −i T, (9)

[
T, Lt

]
= −2i(1 + t2)

1− t2 Lt +
4it

1− t2 Lt ,
[
Lt , Lt

]
= −i(1− t2) T. (10)

Let ∇t be the Tanaka–Webster connection of
(
S3 , H(t), θ

)
, where θ is given by (7),

and let ωt be the connection 1-form associated to the frame {Lt} ⊂ C∞(H(t)
)
, i.e.,

∇tLt = ωt ⊗ Lt , ωt = Γ1
11(t) θ1

t + Γ1
11(t) θ1

t + Γ1
01(t) θ .

Here, we have set

θ1
t =

1
1− t2

(
θ1 − t θ1

)
, θ1

t = θ1
t ,

so that {θ1
t } is an adapted coframe relative to the CR structureH(t), i.e.,

θ1
t
(

Lt
)
= 1, θ1

t
(

Lt
)
= 0, θ1

t
(
T
)
= 0.

By a result in [8] (p. 33),

Γ1
11(t) = g11(t)

{
Lt
(

g11(t)
)
− gt

θ

(
Lt ,

[
Lt , Lt

])}
, (11)

Γ1
11(t) = g11(t) gt

θ

([
Lt , Lt

]
, Lt
)
, (12)

Γ1
01(t) = g11(t) gt

θ

([
T, Lt

]
, Lt
)
, (13)

where

g11(t) =
1

g11(t)
, g11(t) = Gθ

(
Lt , Lt

)
=

1− t2

2
,

and gt
θ is the Webster metric of

(
S3 , H(t), θ

)
, i.e., gt

θ(X, Y) = Gt
θ(X, Y), gt

θ(X, T) = 0 and
gt

θ(T, T) = 1 for any X, Y ∈ H(S3). Substitution from (9) and (10) into (11)–(13) gives

Γ1
11(t) = Γ1

11(t) = 0, Γ1
01(t) = −

2i(1 + t2)

1− t2 , (14)

ωt = Γ1
01(t) θ = −2i(1 + t2)

1− t2 θ. (15)

The pseudohermitian torsion τt of ∇t is given by

τt
(

Lt
)
= A1

1(t) Lt , A1
1(t) = −

4 i t
1− t2 .
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Let Rt = R∇
t

be the curvature tensor field of ∇t. With the convention in [8], p. 50,
the only nonzero component of Rt, with respect to the frame {Lt}, is

Rt(Lt , Lt
)

Lt = R1
1

11(t) , R1
1

11(t) = 2(1 + t2). (16)

In particular, the pseudohermitian scalar curvature of ∇t is

R(t) = g11 R1
1

11(t) =
4(1 + t2)

1− t2 .

To prove (16), one starts from (cf. [8], p. 51)

Rt(X, Y)Lt = 2 (dωt)(X, Y) Lt .

In addition (by taking the exterior differential of (15))

dωt = −
2i(1 + t2)

1− t2 dθ

and hence (as Gt
θ = −i dθ onH(t)⊗H(t))

Rt(Lt , Lt
)

Lt =
4(1 + t2)

1− t2 Gt
θ

(
Lt , Lt

)
Lt = 2(1 + t2) Lt .

2.1.5. Fefferman’s Metric of Rossi’s Sphere

Let C
(
S3 , T1,0(S3)

)
be the canonical circle bundle over (S3, T1,0(S3)). Then

C
(
S3 , T1,0(S3)

)
x =

{[
λ
(
θ ∧ θ1)

x

]
: λ ∈ C \ {0}

}
, x ∈ S3 .

Let η ∈ Ω2(S3) = C∞(Λ2T∗(S3)⊗C
)

be a type (2, 0)-form relative to the CR structure
H(t) i.e.,H(t) c η = 0. Then

η = h θ ∧ θ1
t =

h
1− t2 θ ∧

(
θ1 − t θ1)

for some h ∈ C∞(S3 , C
)
. Hence, the canonical circle bundle over

(
S3 , H(t)

)
is

C
(
S3 , H(t)

)
x =

{[
λ
(
θ ∧ θ1 − t θ ∧ θ1)

x

]
: λ ∈ C \ {0}

}
, x ∈ S3 .

Let πt : C
(
S3 , H(t)

)
→ S3 be the canonical projection. Fefferman’s metric

Ft
θ = F

(
H(t), θ

)
∈ Lor

[
C
(
S3 , H(t)

)]
is

Ft
θ = (πt)∗ G̃t

θ + 2
(
(πt)∗θ

)
� σt ,

σt =
1
3

{
dst + (πt)∗

[
i ωt −

i
2

g11(t) dg11(t)−
1
8

R(t) θ
]}

,

G̃t
θ(X, Y) = Gt

θ(X, Y), G̃t
θ(T, W) = 0, X, Y ∈ H(S3), W ∈ X(S3).

Additionally, st is a local fiber coordinate on C
(
S3 , H(t)

)
that we now describe in

some detail. Let us consider the C∞ diffeomorphism

Φt : C
(
S3 , H(t)

)
→ S3 × S1 , Φt

(
[ω]
)
=
(

x,
α

|α|

)
,



Mathematics 2022, 10, 371 9 of 40

ω = α
(
θ ∧ θ1 − t θ ∧ θ1)

x , x ∈ S3 , λ ∈ C \ {0}.

Note that Φt
(
[ω]
)

is invariant under a transformation α′ = b α with b ∈ R+ hence Φt
is a well defined C∞ diffeomorphism. For every ϕ0 ∈ R, we set

U(ϕ0) =
{

eiϕ :
∣∣ϕ− ϕ0

∣∣ < π
}
⊂ S1 ,

ψ : (ϕ0 − π, ϕ0 + π)→ U(ϕ0), ψ(ϕ) = eiϕ ,

arg : U(ϕ0)→ (ϕ0 − π, ϕ0 + π), arg = ψ−1 ,

U (ϕ0) = Φ−1
t
[
S3 ×U(ϕ0)

]
⊂ C

(
S3 , H(t)

)
,

st = st, ϕ0 : U (ϕ0)→
(

ϕ0 − π, ϕ0 + π
)
, st

(
[ω]
)
= arg

(
α

|α|

)
.

Lemma 1. Fefferman’s metric Ft
θ of Rossi’s sphere

(
S3 , H(t), θ

)
is given by

Ft
θ =

(
πt)∗ G̃t

θ +
2
3
[(

πt)∗θ]� dst +
1 + t2

1− t2

(
πt)∗(θ � θ

)
, (17)

G̃t
θ =

1 + t2

1− t2 θ1 � θ1 − t
1− t2

{(
θ1)2

+
(
θ1)2

}
.

Proof. By (15) and (16)

σt =
1
3

dst +
1 + t2

2(1− t2)
π∗θ

[the Graham connection 1-form of
(
S3 , H(t), θ

)
] yielding (17). The second statement in

Lemma 1 follows from
G̃t

θ = 2 g11(t) θ1
t � θ1

t .

2.1.6. Siegel Domain, Cayley Map

Let
Ω = {(ζ1 , ζ2) ∈ C2 : Im(ζ2) > |ζ1|2}

be the Siegel domain. We shall need the CR isomorphisms

C : S3 \ {(0, −1)} → ∂Ω, C(z, w) =
( z

1 + w
, i

1− w
1 + w

)
, (18)

ψ : H1 → ∂Ω, ψ(ζ, τ) =
(
ζ, τ + i|ζ|2

)
, (19)

(z, w) ∈ S3 , w 6= −1, ζ ∈ C, τ ∈ R,

H : U = S3 \ {(0, −1)} → H1 , H = ψ−1 ◦ C.

Then (i) for every (z, w) ∈ S3 \ {(0, −1)}

H(z, w) =
( z

1 + w
,

2 Im(w)

|1 + w|2
)

, (20)

(ii) for every |t| < 1
H∗ Lt = uH VH + t uH VH , (21)
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where u ∈ C∞(H1 , C
)

is given by

u(ζ, τ) =
1
2

(
|ζ|2 − i τ + 1

)2

|ζ|2 + iτ + 1
, (ζ, τ) ∈ H1 . (22)

Here, uH = u ◦ H and VH = V ◦ H. Formula (20) follows from (18) (the restriction of
the Cayley map C : C2 \ {w + 1 = 0} → C2 to S3 \ {(0, −1)}) and (19) (the canonical CR
isomorphism of the Heisenberg group H1 onto the boundary of the Siegel domain Ω ⊂ C2).
Formula (21) follows from

(d(z,w)H)Lt, (z,w) =
1 + w

(1 + w)2 VH(z,w) + t
1 + w

(1 + w)2 VH(z,w)

together with the observation that (22) yields u(H(z, w)) =
1 + w

(1 + w)2 .

Recall the CR function F(ζ, τ) = |ζ|2 − i τ. If Z = T1, then

H∗Z =
1 + w

(1 + w)2 VH (23)

so that
f (z, w) =

1− w
1 + w

, (z, w) ∈ U ⊂ S3 ,

is a CR function, i.e., f ∈ CR∞(U, H(0)). Indeed, f = F ◦ H and then (by (23)) Z( f ) = 0.
As to the proof of (23), it follows from

H∗ Z =
1 + w + ρ

(1 + w)2 VH − i z ρ

(1 + w)2
(
1 + w

) ( ∂

∂τ

)H
(24)

where ρ(z, w) = zz + ww− 1.

2.2. Folland–Stein Spaces

Let
(

M, H
)

be a strictly pseudoconvex CR manifold, of CR dimension n, and let
θ ∈ P+ be a positively oriented contact form on M. Let Ψ = θ ∧ (dθ)n and let L2(M, θ)
consist of all measurable functions u : M→ R such that

‖u‖L2 = ‖u‖L2(M, θ) =

(∫
M
|u|2 Ψ

)1/2
< ∞.

One tacitly identifies functions coinciding almost everywhere. Let L2(H(M), θ
)

con-
sist of all sections X : M→ H(M) such that Gθ(X, X)1/2 ∈ L2(M, θ), i.e.,

‖X‖L2 = ‖X‖L2(H(M), θ) =

(∫
M

Gθ(X, X) Ψ
)1/2

< ∞ .

A function u ∈ L2(M, θ) is weakly differentiable along H(M) if there is Xu ∈ L2(H(M), θ
)

such that ∫
M

Gθ

(
Xu , Y

)
Ψ = −

∫
M

u div(Y)Ψ

for any Y ∈ C∞
0
(

H(M)
)
. Such Xu is uniquely determined, up to a set of measure zero.

Let D
(
∇H) consist of all weakly differentiable u ∈ L2(M, θ) and let us consider the

linear operator
∇H : D

(
∇H) ⊂ L2(M, θ

)
→ L2(H(M), θ

)
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given by ∇Hu ≡ Xu. Note that C∞
0 (M) ⊂ D

(
∇H) so that ∇H is densely defined.

The Sobolev-type space W1,2
H (M, θ) is D

(
∇H) equipped with the norm

‖u‖W1,2
H

= ‖u‖W1,2
H (M, θ)

=
(
‖u‖2

L2(M, θ) + ‖∇
Hu‖L2(H(M), θ)

)1/2
.

Let E ≡ {Ea : 1 ≤ a ≤ 2n} ⊂ C∞(U, H(M)
)

be a local Gθ-orthonormal frame (i.e.,
Gθ(Ea , Eb) = δab) defined on the open set U ⊂ M. Let i : U → M be the inclusion. A
function u ∈ L2(U, i∗θ) is weakly E-differentiable if for every a ∈ {1, · · · , 2n}, there is
va ∈ L2(U, i∗θ) such that∫

U
va ϕ Ψ = −

∫
U

u
{

Ea(ϕ) + ϕ div
(
Ea
)}

Ψ (25)

for any ϕ ∈ C∞
0 (U). Such va is uniquely determined, up to a set of measure zero, and de-

noted by Ea(u) := va. The Folland–Stein space W1,2
E (U, i∗θ) consists of all weakly E-

differentiable functions u ∈ L2(U, i∗θ) and is equipped with the norm

‖u‖W1,2
E

= ‖u‖W1,2
E (U, i∗θ) =

(
‖u‖2

L2(U, i∗θ) +
2n

∑
a=1
‖Ea(u)‖2

L2(U, i∗θ)

)1/2
.

Then, we have the following:

(i) The restriction map rU : W1,2
H (M, θ)→W1,2

H (U, i∗θ) is a bounded linear operator,
(ii) W1,2

H (U, i∗θ) ≈W1,2
E (U, i∗θ) (an isomorphism of Banach spaces).

The proof of (i) is straightforward. To prove (ii), note first that

W1,2
H (U, i∗θ) = W1,2

E (U, i∗θ)

as vector spaces. Indeed if u ∈ W1,2
H (U, i∗θ) then ∇Hu ∈ L2(H(U), i∗θ

)
is well defined

and one may consider the functions

va := Gθ

(
∇Hu, Ea

)
, 1 ≤ a ≤ 2n.

Then (by the Cauchy–Schwartz inequality)∫
U

∣∣va
∣∣2 Ψ ≤

∫
U

Gθ(∇Hu, ∇Hu) Gθ(Ea , Ea)Ψ = ‖∇Hu‖2
L2 < ∞

so that va ∈ L2(U, i∗θ
)
. On the other hand (as u is weakly differentiable along H(U)) for

every ϕ ∈ C∞
0 (U)∫

U
va ϕ Ψ =

∫
U

Gθ

(
∇Hu, ϕ Ea

)
Ψ = −

∫
U

u div
(

ϕ Ea
)

Ψ

so that u ∈ W1,2
E (U, i∗θ). The opposite inclusion W1,2

H (U, i∗θ) ⊃ W1,2
E (U, i∗θ) may be

proved in the same manner. Next, let us observe that

∇Hu =
2n

∑
a=1

Ea(u) Ea (26)

for every u ∈W1,2
E (U, θ). Indeed, for every X ∈ C∞

0
(

H(U)
)

∫
U

Gθ

(
∇Hu−

2n

∑
a=1

Ea(u) Ea , X
)

Ψ = −
∫

U
u div(X)Ψ−

2n

∑
a=1

∫
U

Ea(u) ϕa Ψ =
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(where we have set ϕa := Gθ

(
Ea , X

)
∈ C∞

0 (U))

= −
∫

U
u div

(
X−

2n

∑
a=1

ϕa Ea
)

Ψ = 0

so that∇H−∑2n
a=1 Ea(u) Ea is orthogonal to C∞

0
(

H(U)
)

[a dense subspace of L2(H(U), i∗θ
)
].

The identity (26) is proved. Finally, one may check that the identity I of W1,2
E (U, i∗θ) pre-

serves the norms. Indeed (by (26)),

‖∇Hu‖2
L2 =

∫
U

Gθ

(
∇Hu, ∇Hu

)
Ψ =

2n

∑
a=1

∫
U

∣∣Ea(u)
∣∣2 Ψ =

2n

∑
a=1
‖Ea(u)‖2

L2 .

It is customary to endow
(
H1 , V

)
with the canonical contact form

θ0 = dτ + i
(
ζ dζ − ζ dζ

)
.

Then Gθ0

(
V, V

)
= 1. Additionally,

H∗ θ0 = λ
(

H ; θ, θ0
)

θ, λ
(

H ; θ, θ0
)
(z, w) =

2∣∣1 + w
∣∣2 .

Let us set as customary ζ = ξ + i η and

X =
∂

∂ξ
+ 2 η

∂

∂τ
, Y =

∂

∂η
− 2 ξ

∂

∂τ
,

so that V = 1
2
(
X− i Y

)
. Then

E ≡
{

E1 , E2
}

, E1 =
1√
2

X, E2 =
1√
2

Y,

is a (globally defined) Gθ0-orthonormal frame on H1. The CR isomorphism H : U ≈ H1
induces L2(H1 , θ0

)
≈ L2(U , θ

)
(a vector space isomorphism). Indeed, if f ∈ L2(H1 , θ0

)
and u = f ◦ H then [by H∗Ψ0 = λ2 Ψ with λ = λ

(
H ; θ, θ0

)
and Ψ0 = θ0 ∧ dθ0, Ψ = θ ∧ dθ]

∫
U
|u|2 Ψ =

∫
U

( |u|
λ

)2
H∗ Ψ0 =

∫
H1

( | f |
λ ◦ H−1

)2
Ψ0 =

=
∫
H1

4
∣∣ f (ζ, τ)

∣∣2[(
1 + |ζ|2

)2
+ τ2

]2 Ψ0(ζ, τ) ≤ 4
∥∥ f
∥∥2

L2(H1 , θ0)
< ∞ .

As H is a CR isomorphism U ≈ H1, Cauchy–Riemann analysis is the same on U and
H1. However, H does not preserve the contact forms θ and θ0 so that (U, θ) and (H1 , θ0)
have rather different pseudohermitian geometries. On the same line of thought, we prove
the following.

Theorem 2. The map f 7−→ f ◦ H is an isomorphism

W1,2
E
(
H1 , θ0

)
≈W1,2

F
(
U , θ

)
.

Here, U = S3 \ {(0, −1)} while E ≡ {E1 , E2} ⊂ C∞(H(H1)
)
, respectively F ≡

{F1 , F2} ⊂ C∞(H(U)), are the canonical Gθ0-orthonormal, respectively Gθ-orthonormal, frames

E1 =
1√
2

(
V + V

)
, E2 =

i√
2

(
V −V

)
,
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F1 = Z + Z , F2 = i
(
Z− Z

)
.

Lemma 2. div
(

Fa
)
= 0.

Proof. It follows from the fact that the only nonvanishing Christoffel symbol of the Tanaka–
Webster connection ∇ of

(
S3 , θ

)
is Γ1

01 = −2i (itself a consequence of (14) with t = 0).

Proof of Theorem 2. Given f ∈W1,2
E
(
H1 , θ0

)
, we need to show that for every a ∈ {1, 2},

there is va ∈ L2(U, θ
)

such that (by (25) and Lemma 2)∫
U

va ϕ Ψ = −
∫

U

(
f ◦ H) Fa(ϕ) Ψ (27)

for any ϕ ∈ C∞
0 (U). The candidate for va is, of course, obtained by computing Fa

(
f ◦ H

)
when f is smooth.

Lemma 3. Let f ∈ C1(H1
)

and u = f ◦ H. Then

F1(u) = i ρ
(

g− g
) ( ∂ f

∂τ

)H
+

1√
2

(
h + h

)
E1( f )H +

i√
2

(
h− h

)
E2( f )H , (28)

F2(u) = ρ
(

g + g
) ( ∂ f

∂τ

)H
− i√

2

(
h− h

)
E1( f )H +

1√
2

(
h + h

)
E2( f )H , (29)

where
g, h : C2 \ {w + 1 = 0} → C2 ,

g(z, w) =
z(

1 + w
)(

1 + w
)2 , h(z, w) =

1 + w + ρ(z, w)(
1 + w

)2 , (30)

and ρ(z, w) = |z|2 + |w|2 − 1.

Proof. It follows from (24), and its complex conjugate.

Let va be the (restrictions to U of the) right-hand sides of (28) and (29), respectively. By
a change of the variable under the integral sign,

∫
U

va ϕ Ψ =
∫
H1

(va ϕ

λ2

)H−1

Ψ0

for every ϕ ∈ C∞
0 (U). Throughout, vH−1

= v ◦ H−1, and the inverse of H : U → H1 is

H−1(ζ, τ) =

(
2iζ

τ + i
(
|ζ|2 + 1

) , −
τ + i

(
ζ|2 − 1

)
τ + i

(
|ζ|2 + 1

)). (31)

Next (by the very definition of v1),∫
U

v1 ϕ Ψ =

=
1√
2

∫
H1

( ϕ

λ2

)H−1{(
h + h

)H−1
E1( f ) + i

(
h− h

)H−1
E2( f )

}
Ψ0 =

(as f is E-differentiable)

= − 1√
2

∫
H1

f
{

E1

(
GH−1

+

)
+ i E2

(
GH−1

−

)}
Ψ0
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where G± =
ϕ

λ2

(
h± h

)
. Next E1

(
GH−1
+

)
+ i E2

(
GH−1
−

)
may be computed from

G+ + G− =
2ϕh
λ2 , G+ − G− =

2ϕh
λ2 ,

so that ∫
U

f ϕ Ψ = (32)

=
∫
H1

f

V

( ϕh
λ2

)H−1+ V

[(
ϕh
λ2

)H−1]Ψ0 .

Note that (by (30) and (31))

h ◦ H−1 =
1
2

(
1 + F

)2

1 + F
. (33)

On the other hand (by (23)),

(H−1)∗ V =
(1

h
Z
)H−1

. (34)

As F is a CR function, i.e., V(F) = 0 and V(F) = 2ζ (by (33) and (34) and their complex
conjugates)

V

( ϕh
λ2

)H−1 = h
H−1

V
[( ϕ

λ2

)H−1]
+ 2 ζ

( ϕ

λ2

)H−1 1 + F
1 + F

,

h
H−1

V
[( ϕ

λ2

)H−1]
= Z

( ϕ

λ2

)H−1

,

and substitution into (32) followed by a change of variable under the integral sign gives∫
U

v1 ϕ Ψ = −
∫

U
u F1(ϕ)Ψ+ (35)

−
∫

U
u ϕ
{

λ2 F1

( 1
λ2

)
+ 2
(1 + F

1 + F
ζ +

1 + F
1 + F

ζ
)H}

Ψ .

Finally, by the identities

(1 + F)H =
2

1 + w
, ζH =

z
1 + w

,

Z(λ) =
z λ

1 + w
,
(

1
λ2

)H−1

=
4

|1 + F|4 , (36)

the last integral in (35) vanishes (yielding (27) with a = 1).

The proof of the second relation in (27) is similar. Moreover, va ∈ L2(U, θ) because

h Ea( f )H ∈ L2(U, θ) (37)

and L2(U, θ) is a vector space. As to the proof of (37) (by a change of variable)

∫
U

∣∣h Ea( f )H∣∣2 Ψ =
∫
H1

(
|h|2
λ2

)H−1 ∣∣Ea( f )
∣∣2 Ψ0 =
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(by (33) and the second identity in (36))

=
∫
H1

∣∣Ea( f )
∣∣2

|1 + F|2 Ψ0 ≤
∫
H1

∣∣Ea( f )
∣∣2 Ψ0 < ∞ .

2.3. Quasiconformal Maps

Let N be a (for now, abstract) strictly pseudoconvex 3-dimensional CR manifold.
However, in the applications to come, N will be a strictly pseudoconvex real hypersurface
N ⊂ C2 endowed with the induced CR structure

T1,0(N) =
[
T(N)⊗C

]
∩ T1,0(C2).

Definition 1. A C∞ diffeomorphism f : S3 → N is a contact transformation if

(dx f )H(S3)x = H(N) f (x) , x ∈ S3 .

Note that the notion of a contact transformation does not depend upon the particular
CR structures one may set on S3 and N, but only on their Levi distributions.

Lemma 4. Let Θ ∈ P+(N) be a positively oriented contact form on N and let f : S3 → N be a
C∞ diffeomorphism. The following statements are equivalent:

(i) f is a contact transformation of
(
S3 , H(S3)

)
into

(
N, H(N)

)
.

(ii) There is a C∞ function

λ = λ( f ) = λ
(

f ; θ, Θ
)

: S3 → R \ {0}

such that f ∗ Θ = λ θ.

Proof. (i) =⇒ (ii). There exist functions λ , λ1 ∈ C∞(S3 , C
)

such that

f ∗Θ = λ θ + λ1 θ1 + λ1 θ1

where λ1 = λ1. Then for any x ∈ S3

λ1(x) =
((

f ∗ Θ
)

T1
)

x = Θ f (x)
[(

dx f
)

T1, x
]
= 0

because of(
dx f
)

T1, x ∈
(
dx f
)

H(S3)x ⊗R C ⊂ H(N) f (x) ⊗R C = Ker
(
Θ
)

f (x) ⊗R C.

Then f ∗ Θ = λ θ, and λ is real valued. To show that λ is nowhere vanishing, we argue
by contradiction. Let us assume that λ(x0) = 0 for some x0 ∈ S3. Then

0 = λ(x0) θx0 =
(

f ∗ Θ
)

x0
= Θ f (x0)

◦ (dx0 f )

and hence for every v ∈ Tx0(S
3)

(dx0 f )v ∈ Ker(Θ) f (x0)
= H(N) f (x0)

=⇒
(
dx0 f

)
Tx0(S

3) ⊂ H(N) f (x0)
,

a contradiction, because

dimR Tx0(S
3) = 3, dimR H(N) f (x0)

= 2,

and dx0 f is a R-linear isomorphism.
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(ii) =⇒ (i) Let v ∈ H(S3)x = Ker(θ)x. Then

0 = λ(x) θx(v) =
(

f ∗Θ
)

x(v) = Θ f (x)
[
(dx f )v

]
=⇒

=⇒ (dx f )v ∈ Ker(Θ) f (x) = H(N) f (x)

and hence,
(dx f )H(S3)x ⊂ H(N) f (x)

for any x ∈ S3.

It should be observed that in the proof of Lemma 4, use was made of the frames {T1} ⊂
C∞(T1,0(S3)

)
and {θ1 , θ1 , θ} ⊂ C∞(T∗(S3) ⊗ C

)
and, therefore, of the canonical CR

structure T1,0(S3) of the sphere. Any other CR structureH with the same Levi distribution
H(S3) = Re

{
H⊕H

}
would have worked equally well.

Definition 2. The function λ = λ( f ; θ, Θ) is called the dilation of f with respect to the contact
forms θ ∈ P+(S3) and Θ ∈ P+(N).

It obeys the following transformation law, with respect to a transformation of the
given (positively oriented) pseudohermitian structures.

Lemma 5. Let f : S3 → N be a contact transformation of
(
S3 , H(S3)

)
into (N, H(N)). Let

θ̂ = eu θ and Θ̂ = ev Θ with u ∈ C∞(S3, R
)

and v ∈ C∞(N, R
)
. Then

λ
(

f ; θ̂, Θ̂
)
= exp

(
v ◦ f − u

)
λ
(

f ; θ, Θ
)
. (38)

In particular, sign
[
λ
(

f ; θ, Θ
)]
∈ {±1} is a CR invariant.

Proof. Let us set λ = λ
(

f ; θ, Θ
)

and λ̂ = λ
(

f ; θ̂, Θ̂
)

for the sake of simplicity. Then(
f ∗Θ̂

)
x = Θ̂ f (x) ◦ (dx f ) = ev( f (x)) Θ f (x) ◦ (dx f ) =

= ev( f (x)) ( f ∗Θ
)

x = ev( f (x)) (λ θ)x

that is
f ∗ Θ̂ = ev◦ f λ θ.

On the other hand
f ∗ Θ̂ = λ̂ θ̂ = λ̂ eu θ

yielding λ̂ = ev◦ f−u λ.

To fix ideas, from now on, we shall work with contact transformations f : S3 → N of
positive dilation, i.e.,

λ
(

f ; θ , Θ
)
> 0

with respect to some fixed contact form Θ ∈ P+(N). According to Lemma 5, this is a
CR-invariant assumption.

Let H be an arbitrary CR structure on S3 whose Levi distribution is H(S3), and let
K > 1 be a constant.

Definition 3. A contact transformation f : S3 → N is called a K-quasiconformal mapping of the
pseudohermitian manifold (S3 , H, θ) into (N, T1,0(N), Θ) if

1
K

Gθ,H
(
X , X

)
≤

G f
Θ
(

f∗X , f∗Y
)

λ( f ; θ, Θ)
≤ K Gθ,H

(
X , X

)
(39)
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for any X, Y ∈ H(S3).

Here, Gθ,H is the Levi form of
(
S3 , H

)
and G f

Θ = GΘ ◦ f . Additionally, f∗X denotes
the C∞ section in the pullback bundle f−1T(N)→ S3 given by(

f∗X
)
(x) = (dx f )Xx ∈ Tf (x)(N) =

(
f−1TN

)
x , x ∈ S3 .

The same symbol f∗ will denote the vector bundle morphism f∗ : T(S3)→ f−1T(N)
(descending to a vector bundle morphism f∗ : H(S3)→ f−1H(N), because f is a contact
map) determined by the differential d f . Let

JN : H(N)→ H(N), JN
(
W + W

)
= i
(
W −W

)
, W ∈ T1,0(N),

be the complex structure along the Levi distribution H(N). Let us set

J f : H(S3)→ H(S3),

J f , x = (dx f )−1 ◦ JN, f (x) ◦ (dx f ), x ∈ S3 .

Then
(

J f
)2

= −I, and hence J f determines the CR structure

H f = Eigen
(

JCf ; +i
)
⊂ H(S3)⊗C

whose Levi distribution is once again H(S3). Let G f be the Levi form of
(
S3 , H f

)
, i.e.,

G f
θ

(
X, Y

)
= (dθ)

(
X, J f Y

)
, X, Y ∈ H(S3).

One has
G f

Θ
(

f∗X , f∗Y
)

x = GΘ, f (x)
(
(dx f )Xx , (dx f )Yx

)
=

=
(
dΘ
)

f (x)

(
(dx f )Xx , JN, f (x)(dx f )Yx

)
= (dΘ) f (x)

(
(dx f )Xx , (dx f ) J f , x Yx

)
=

=
(

f ∗ dΘ
)
(X, J f Y)x =

(
d f ∗ Θ

)
(X, J f Y)x =

(
d (λ θ)

)
(X, J f Y)x =

=
(
dλ ∧ θ + λ dθ

)
(X, J f Y

)
x = λ(x) (dθ)(X, J f Y)x

that is,
G f

Θ
(

f∗X , f∗Y
)
= λ G f (X, Y) (40)

for any X, Y ∈ H(S3). Consequently the K-quasiconformal requirement (39) may be
rephrased as

1
K

Gθ,H
(
X , X

)
≤ G f

(
X , X

)
≤ K Gθ,H

(
X , X

)
. (41)

Lemma 6. Let f : S3 → N be a contact transformation of
(
S3 , H(S3)

)
into

(
N, H(N)

)
. LetH

be a CR structure on S3 such that H(S3) = Re
{
H⊕H

}
and θ ∈ P+

(
S3 , H

)
. If x ∈ S3 and

w ∈ Hx with w 6= 0 then
(dx f )w 6∈ Tf (x)(N) f (x)

that is
T1,0(N) f (x) ∩ (dx f )Hx = (0). (42)

Proof. We argue by contradiction, i.e., we assume that

(dx f )w ∈ T1,0(N) f (x)
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for some w ∈ Hx ⊂ H(S3)x ⊗R C with w 6= 0. Then (as T1,0(N) is nondegenerate and Θ is
positively oriented)

0 < GΘ, f (x)
(
(dx f )w, (dx f )w

)
=

=
(
dΘ
)

f (x)

(
(dx f )w , JN, f (x) (dx f )w

)
=

[as (dx f )w ∈ T0,1(N) f (x) and dx f is real]

= −i
(
dΘ
)

f (x)

(
(dx f )w , (dx f )w

)
= −i

(
d f ∗ Θ

)
x(w, w) =

= −i
(
d (λ θ)

)
x(w, w) = i

(
dλ ∧ θ + λ dθ

)
x

(
w , w

)
=

= i λ(x) (dθ)x
(
w , w

)
= −λ(x) (dθ)x

(
w , JHx w

)
=

= −λ(x) Gθ,H, x
(
w , w

)
< 0,

a contradiction.

Here, we assumed that the canonical contact form (7) is positively oriented relative to
(S3 , H

)
. Otherwise, one merely replaces θ by −θ to start with.

The contents of (42) are that, solely as a consequence of f : S3 → N being a contact
transformation of positive dilation λ( f ) > 0,(

f∗H
)
∩ f−1T1,0(N) = (0)

for every CR structureH on S3 whose Levi distribution is H(S3).
Let f : S3 → N andH be as in Lemma 6. Next, let{

L} ⊂ C∞(U, H
)
,
{

TN
1
}
⊂ C∞(V, T1,0(N)

)
,

be local frames in H and T1,0(N) respectively, defined on the open subsets U ⊂ S3 and
V ⊂ N such that U = f−1(V). For every x ∈ U

(dx f )Lx = f 1
1

(
x ; H

)
TN

1, f (x) + f 1
1

(
x ; H

)
TN

1 , f (x)

for some functions
f 1
1

(
· ; H

)
, f 1

1

(
· ; H

)
∈ C∞(U, C

)
.

The adopted notation emphasizes the dependence of the coefficients f 1
1

and f 1
1

on
the CR structure H. Occasionally, if there is no danger of confusion, we drop H and
write merely

f 1
1 = f 1

1

(
· ; H

)
, f 1

1 = f 1
1

(
· ; H

)
.

Lemma 7. One has
f 1
1

(
x ; H

)
6= 0 (43)

for any x ∈ U.

Proof. We argue by contradiction, i.e., we assume that f 1
1
(x0) = 0 for some x0 ∈ U. Then

(dx0 f )Lx0 = f 1
1

(
x0
)

TN
1, f (x0)

∈ T1,0(N) f (x0)

and Lx0 6= 0, in contradiction with Lemma 6.

We adopt the temporary notation

Ĥ f =
{

Z ∈ H(S3)⊗C : f∗Z ∈ f−1T1,0(N)
}

. (44)
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Then
Ĥ f ∩H = (0)

for any CR structureH on S3 as in Lemma 6.

Lemma 8. Let f : S3 → N be a contact transformation of positive dilation λ( f ) > 0. For every
CR structureH on S3 such that

H(S3) = Re
{
H⊕H

}
, θ ∈ P+

(
S3 , H

)
, (45)

there is a field
µ = µ

(
f , H

)
: H → H

of C-anti-linear maps such that

Ĥ f =
{

Z− µ Z : Z ∈ H
}

. (46)

Proof. Let us start with W ∈ Ĥ f represented as

W = A1 L + B1 L

with respect to the local frame {L, L} of H(S3)⊗C. Then

f−1T1,0(N) 3 f∗W =
(

A1 f 1
1 + B1 f 1

1

)
TN

1 +
(

A1 f 1
1 + B1 f 1

1

)
TN

1

yielding

B1 = −
f 1
1

f 1
1

A1 .

Therefore

W = A1

L−
f 1
1

f 1
1

L

,

i.e., Ĥ f is (locally, on U) the span of
{

L−
(

f 1
1
/

f 1
1

)
L
}

.

Let x ∈ S3 be an arbitrary point and let us choose local frames {L} and {TN
1 } of the

CR structuresH and T1,0(N), defined on open neighborhoods of the points x and f (x)

x ∈ U ⊂ S3 , f (x) ∈ V ⊂ N, U = f−1(V).

Our rather pedantic approach to the construction of µx (see below) is devised to
emphasize that the resulting µ is globally defined. Indeed we set by definition

µx : Hx → Hx , µx Lx =
f 1
1

(
x ; H

)
f 1
1
(
x ; H

) Lx , (47)

followed by the C-anti-linear extension to the whole ofHx. The definition of µx does not
depend upon the choice of local frames about x and f (x). Indeed, let us consider local
frames {

L′} ⊂ C∞(U′, H), {
T′1

N} ⊂ C∞(V′ , T1,0(N)
)
,

x ∈ U′ ⊂ S3 , f (x) ∈ V′ ⊂ N, U′ = f−1(V′).

Then
L′ = u1

1 L on U ∩U′ , T′1
N
= v1

1 TN
1 on V ∩V′ ,
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for some C∞ functions u1
1 : U ∩ U′ → C and v1

1 : V ∩ V′ → C. A comparison of
the representations

f∗ L = f 1
1 TN

1 + f 1
1 TN

1 , f∗ L′ = f ′11 T′1
N
+ f ′11 T′1

N ,

yields

f ′11 v1
1 = u1

1 f 1
1 , f ′11 v1

1 = u1
1 f 1

1 , (48)

where v1
1
= v1

1. LetHA denote the portion ofH over the open set A ⊂ S3. If

µ : HU → HU , µ′ : HU′ → HU′ ,

µL =
f 1
1

f 1
1

L, µ′L′ =
f ′11
f ′11

L′,

what one needs to check is that µ|U∩U′ = µ′|U∩U′ . This is but a standard calculation relying
on (48).

Summing up, we built a family of vector bundle morphisms

µ
(

f , H
)

: H → H (49)

associated to the contact transformation f : S3 → N with λ( f ) > 0, such that Ĥ f is
represented by (46). Let CR

[
H
(
S3)] be the set of all CR structuresH on S3 obeying to (45).

The family of morphisms (49) is then parametrized byH ∈ CR
[
H
(
S3)].

Definition 4. Each µ( f , H) is referred to as the complex dilation of f with respect to the CR
structureH.

We previously mentioned that Ĥ f is but a temporary name for the bundle on the
right-hand side of (44). Indeed, one has

Lemma 9. Ĥ f = H f .

Proof. If J f
N = JN ◦ f , then

H f = Eigen
[(

J f
)C ; +i

]
=
{

Z ∈ H(S3)⊗C : J f Z = i Z
}
=

=
{

Z ∈ H(S3)⊗C : J f
N
(

f∗Z
)
= i f∗Z

}
=

=
{

Z ∈ H(S3)⊗C : f∗Z ∈ f−1Eigen
[
(JN)

C ; +i
]}

=

=
{

Z ∈ H(S3)⊗C : f∗Z ∈ f−1T1,0(N)
}
= Ĥ f .

By a result of H. Rossi (cf. [1]), the CR manifold
(
S3 , H(t)

)
is not globally embeddable

in C2, for any 0 < |t| < 1. Hence, for every nondegenerate CR hypersurface N ⊂ C2, there
is no CR isomorphism f :

(
S3 , H(t)

)
→ N, except of course for t = 0 (when one may

consider N = S3 and f = 1S3 ). We propose the following weaker version of the global CR
embedding problem.

Problem 1. Given a strictly pseudoconvex CR manifold M of CR dimension n, find (i) a real
hypersurface N ⊂ Cn+1 whose induced CR structure T1,0(N) is strictly pseudoconvex, (ii) a
constant K > 1, and iii) a K-quasiconformal map f : M→ N.
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Our treatment of the question in Problem 1 is confined to H. Rossi’s nonembeddable
examples

(
S3 , H(t)

)
. Precisely, we shall discuss the following.

Problem 2. Find (i) a function K : (−1, 1) → (1, +∞), (ii) a family {Nt}0<|t|<1 of nonde-
generate real hypersurfaces Nt ⊂ C2, and (iii) a family { ft}0<|t|<1 of K(t)-quasiconformal maps
ft :
(
S3 , H(t)

)
→ Nt.

2.4. Beltrami’s Equation

Let N ⊂ C2 be a nondegenerate real hypersurface, and let f =
(

f 1 , f 2) : S3 → N be a
contact transformation of

(
S3 , H(S3)

)
into

(
N, H(N)

)
with λ( f ) > 0. By Lemmas 8 and 9

Lt − µ f (t) Lt ∈ H f , |t| < 1,

where we have set
µ f (t) = µ

[
f , H(t)

]
: H(t)→ H(t).

Hence (by the very definition of Ĥ f )

f−1T1,0(N) 3 f∗
[

Lt − µ f (t) Lt

]
= f∗

[
Lt − µ1

1(t) Lt

]
(50)

where the functions µ1
1(t) : S3 → C are given by

µ f (t) Lt = µ1
1(t) Lt , µ1

1(t) =
f 1
1
(t)

f 1
1 (t)

, µ1
1(t) = µ1

1
(t) ,

f A
B (t) = f A

B
[
· ; H(t)

]
, A, B ∈

{
1, 1

}
.

Lemma 10. Let f =
(

f 1 , f 2) : S3 → N be a contact transformation of
(
S3 , H(S3)

)
into(

N, H(N)
)

with λ( f ) > 0. The components f j : S3 → C satisfy Beltrami’s equations

Lt
(

f j) = µ1
1(t) Lt

(
f j), j ∈ {1, 2}, |t| < 1. (51)

Proof. One has (by (50))

f−1T1,0(C2) ⊃ f−1T1,0(N) 3 Lt
(

f j) ∂

∂ζ j + Lt
(

f j
) ∂

∂ζ
j +

−µ1
1(t)

{
Lt
(

f j) ∂

∂ζ j + Lt
(

f j
) ∂

∂ζ
j

}
so that

Lt
(

f j
)
− µ1

1(t) Lt
(

f j
)
= 0

or (by taking complex conjugates)

Lt
(

f j) = µ1
1(t) Lt

(
f j)

which is (51).

Lemma 11. Let µ = µ
[

f , T1,0(S3)
]

: T1,0(S3)→ T1,0(S3) be the complex dilation of f : S3 → N
relative to the canonical CR structureH(0) = T1,0(S3). If µ T1 = µ1

1
T1 then

µ1
1(t) =

µ1
1
+ t

1 + t µ1
1

(52)
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for every |t| < 1. In particular, the coefficients of the complex dilation µ f (t) depend smoothly on
the parameter t.

Proof. As L0 = T1 (
dx f
)
T1 , x = f 1

1

(
x, 0

)
TN

1, f (x) + f 1
1

(
x, 0

)
TN

1 , f (x)

hence (
dx f
)

Lt, x =
(
dx f
)
T1, x + t

(
dx f
)
T1 , x =

= f 1
1 (x, 0) TN

1, f (x) + f 1
1 (x, 0) TN

1, f (x)+

+t
[

f 1
1 (x, 0) TN

1, f (x) + f 1
1 (x, 0) TN

1 , f (x)

]
=

=
[

f 1
1 (x, 0) + t f 1

1 (x, 0)
]

TN
1, f (x) +

[
f 1
1 (x, 0) + t f 1

1 (x, 0)
]

TN
1, f (x)

yielding
f 1
1 (x, t) = f 1

1 (x, 0) + t f 1
1 (x, 0), f 1

1 (x, t) = f 1
1 (x, 0) + t f 1

1 (x, 0). (53)

Let us set
f A
B (x) = f A

B (x, 0), A, B ∈
{

1, 1
}

.

According to the definition (47), the coefficients of the complex dilation µ = µ f (0) are
given by

µ T1 = µ1
1

(
· , 0
)

T1 , µ1
1

(
· , 0
)
=

f 1
1

f 1
1

.

Next, let us set t = 0 into (51) to obtain

T1
(

f j) = µ1
1

(
· , 0
)

T1
(

f j). (54)

Let us set
µA

B (x) = µA
B
(

x, 0
)
, A, B ∈

{
1, 1

}
.

Then

µ1
1(x, t) =

f 1
1
(x, t)

f 1
1 (x, t)

=

[by (53) and (54)]

=
f 1
1
(x, 0) + t f 1

1 (x, 0)

f 1
1 (x, 0) + t f 1

1
(x, 0)

=
µ1

1
(x) + t

1 + t µ1
1
(x)

.

Corollary 1. The components f j of a contact transformation f : S3 → N ⊂ C2 under the
assumptions of Lemma 10 satisfy the Beltrami equation

Lt
(

f j) = µ1
1
+ t

1 + t µ1
1

Lt
(

f j)
for any j ∈ {1, 2}.

Let
(

N, T1,0(N)
)

be a nondegenerate 3-dimensional CR manifold and let Θ ∈ P+(N)
be a positively oriented contact form. Let f : S3 → N be a contact transformation with
λ( f ) = λ( f ; θ, Θ) > 0. Let H ∈ CR

[
H(S3)

]
and let µ f = µ

(
f , H

)
: H → H be the

complex dilation of f .
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Definition 5. The pointwise norm of µ f is the function ‖µ f ‖ : S3 → [0,+∞) defined by

∥∥µ f
∥∥(x) =

[
sup

0 6=Z∈Hx

Gθ, x
(
µ f , xZ , µ f , xZ

)
Gθ, x

(
Z, Z

) ]1/2

, x ∈ S3.

We shall need the following

Theorem 3. LetH ∈ CR
[
H(S3)

]
and let f : S3 → N be a contact transformation with λ( f ) > 0.

The following statements are equivalent:

(i) There is K > 1 such that f is K-quasiconformal.
(ii) There is K > 1 such that ∥∥µ f

∥∥ ≤ K− 1
K + 1

. (55)

Theorem 3 is stated in [3], p. 61, with
(
S3 , H

)
replaced by an arbitrary strictly

pseudoconvex manifold M, yet the proof is confined to the case where M = N = Hn
(the Heisenberg group). We give (by following the ideas in [3], pp. 63–65) a proof of the
statement as it applies to Rossi’s spheres, and refer to Theorem 3 as the Koranyi–Reimann
characterization theorem.

Proof of Theorem 3. Let x0 ∈ S3 and let us choose an open neighborhood V ⊂ N of f (x0)
and local orthonormal frames

{Z1} ⊂ C∞(U, H
)
, {TN

1 } ⊂ C∞(V, T1,0(N)
)
, U = f−1(V),

Gθ

(
Z1 , Z1

)
= 1, GΘ

(
TN

1 , TN
1

)
= 1.

Next, let us set
E1 = Z1 + Z1 , E2 = JE1 = i

(
Z1 − Z1

)
,

EN
1 = TN

1 + TN
1 , EN

2 = JN EN
1 = i

(
TN

1 − TN
1

)
,

so that
{

Ea : a ∈ {1, 2}
}

and
{

EN
a : a ∈ {1, 2}

}
are respectively local frames of H(S3)

and H(N). Then
f∗ Eb = Fa

b
(
EN

a
) f

for some C∞ functions Fa
b : U → R such that det

[
Fa

b (x)
]
6= 0 for any x ∈ U. Let us consider

g : U → GL
(
2,R

)
, g =

1√
λ( f )

[
F1

1 F1
2

F2
1 F2

2

]
.

We shall need the symplectic group

Sp
(
2,R

)
=
{

a ∈ GL(2,R) : aτ J0 a = J0
}

, J0 =

[
0 1
−1 0

]
.

Lemma 12. g is Sp
(
2, R

)
-valued.

Proof. One has (
dθ
)
(E1 , E2) = −2 i

(
dθ
)
(Z1 , Z1

)
= 2 Gθ(Z1 , Z1) = 2

and similarly (
dΘ
)
(EN

1 , EN
2 ) = 2.
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Then [by f ∗Θ = λ( f ) θ and Ker(θ) = H(S3)](
dΘ
) f ( f∗E1 , f∗E2

)
=
(
d f ∗ Θ

)(
E1 , E2

)
= λ( f ) (dθ)(E1 , E2) = 2 λ( f ).

On the other hand(
dΘ
) f ( f∗E1 , f∗E2

)
=
(

F1
1 F2

2 − F2
1 F1

2
)
(dΘ)(EN

1 , EN
2 ) ◦ f =

= 2
(

F1
1 F2

2 − F2
1 F1

2
)
= 2 λ( f ) det(g).

It follows that det(g) = 1.

Let us set

K = Sp
(
2, R

)
∩O(2), A+ =

{(
es 0
0 e−s

)
: s ≥ 0

}
,

j : GL
(
1,C

)
= C \ {0} → GL

(
2,R

)
, j(x + i y) =

(
x y
−y x

)
.

Lemma 13. K = O(2) ∩ j
[
U(1)

]
.

The proof is straightforward and therefore omitted. Here U(n) =
{

a ∈ GL(n,C) :
a τ a = In

}
so that U(1) = {a ∈ C : |a| = 1}. We shall need the Cartan decomposition of

Sp(2, R)
Sp(2,R) = K A+ K.

By Lemma 12, there exist functions k, k′ : U → K and a : U → A+ such that

g = k a k′

on U, i.e., there exist x, y, u, v : U → R and s : U → [0,+∞) such that

x2 + y2 = 1, u2 + v2 = 1,

g =

(
x y
−y x

)(
es 0
0 e−s

)(
u v
−v u

)
= (56)

=

 xues − yve−s xves + yue−s

−yues − xve−s −yves + xue−s


on U. Next

Z1 =
1
2
(
E1 − i E2

)
, Z1 =

1
2
(
E1 + i E2

)
,

TN
1 =

1
2
(
EN

1 − i EN
2
)
, TN

1 =
1
2
(
EN

1 + i EN
2
)
,

f∗ Z1 = f 1
1
(
TN

1
) f

+ f 1
1
(
TN

1

) f , f∗ Z1 = f 1
1

(
TN

1
) f

+ f 1
1

(
TN

1

) f ,

yield

f∗Z1 =
1
2
[
F1

1 + F2
2 + i

(
F2

1 − F1
2
)](

TN
1
) f
+

+
1
2
[
F1

1 − F2
2 − i

(
F2

1 + F1
2
)](

TN
1

) f
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and if g =

(
g1

1 g1
2

g2
1 g2

2

)
then

f 1
1 =

1
2
[
F1

1 + F2
2 + i

(
F2

1 − F1
2
)]

= (57)

=
1
2

√
λ( f )

(
g1

1 + g2
2
)
+

i
2

√
λ( f )

(
g2

1 − g1
2
)
,

f 1
1 =

1
2
[
F1

1 − F2
2 − i

(
F2

1 + F1
2
)]

= (58)

=
1
2

√
λ( f )

(
g1

1 − g2
2
)
− i

2

√
λ( f )

(
g2

1 + g1
2
)
.

Let us substitute from (56) into (57) and (58) to obtain

f 1
1 =

√
λ( f )

(
xu− yv− iyu− ixv

) es + e−s

2
= (59)

=
√

λ( f )
(
x− iy

) (
u− iv

)
cosh s,

f 1
1 =

√
λ( f )

(
xu + yv + iyu− ixv

) es − e−s

2
= (60)

=
√

λ( f )
(
x + iy

)(
u− iv

)
sinh s.

Lemma 14.
∥∥µ f

∥∥ = tanh s.

Proof. We start from µ1
1

f 1
1 = f 1

1
. Then (by (59) and (60) and their complex conjugates),

µ1
1

(
x− iy

)(
u− iv

)
cosh s =

(
x− iy

)(
u + iv

)
sinh s

or
µ1

1 =
(
u + iv

)2 tanh s. (61)

Next, for every x ∈ U and every W ∈ Hx \ {0x} one has W = h Z1, x for some
h ∈ C \ {0} and then

Gθ x
(
µ f , xW , µ f , xW

)
Gθ, x

(
W , W

) =

=
(u− iv)2(u + iv)2(tanh s)2hh

hh
=
[

tanh s(x)
]2

and hence,
∥∥µ f

∥∥(x) = tanh s(x).

At this point, we may attack the final part of the proof of Theorem 3. We start from
‖µ f ‖ = tanh s (cf. Lemma 14) so that

1 + ‖µ f ‖
1− ‖µ f ‖

=
1 + tanh s
1− tanh s

=
es

e−s = e2s .

Recall that both k and k′ are O(2)-valued. Then for any x ∈ U and any x ∈ R2

sup
|x|=1

∣∣g(x) x
∣∣ = sup

|x|=1

∣∣k(x) a(x) k′(x) x
∣∣ =

= sup
|x|=1

∣∣a(x) k′(x) x
∣∣ = sup

|y|=1

∣∣a(x)y
∣∣ = es
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where y = k′(x)x. Similarly
inf
|x|=1

∣∣g(x)x
∣∣ = e−s .

It follows that
1 + ‖µ f ‖(x)
1− ‖µ f ‖(x)

=
sup|x|=1

∣∣g(x)x
∣∣

inf|x|=1
∣∣g(x)x

∣∣ . (62)

Proof of (i) =⇒ (ii). If f is K-quasiconformal for some K > 1, then for every x ∈ S3 and
every X ∈ H(S3)x

λ( f )x

K
Gθ, x

(
X, X

)
≤ GΘ, f (x)

(
(dx f )X, (dx f )X

)
≤ λ( f )x K Gθ, x

(
X, X

)
or

1
K
∣∣x∣∣2 ≤ ∣∣g(x)x

∣∣2 ≤ K
∣∣x∣∣2

where
x =

(
x1 , x2) ∈ R2 , X = x1 E1, x + x2 E2, x ∈ H

(
S3)

x .

Consequently,
1√
K
≤ inf
|x|=1

∣∣g(x)x
∣∣, sup

|x|=1

∣∣g(x)x
∣∣ ≤ √K ,

so that [by (62)]
1 + ‖µ f ‖
1− ‖µ f ‖

≤ K

or
‖µ f ‖ ≤

K− 1
K + 1

.

Proof of (ii) =⇒ (i). If there is K > 1 such that (55) holds, then

es(x)

e−s(x)
=

sup|x|=1

∣∣g(x)x
∣∣

inf|x|=1
∣∣g(x)x

∣∣ =
1 + ‖µ f ‖(x)
1− ‖µ f ‖(x)

≤ K

so that es(x) ≤ K e−s(x). Let x1 E1, x + x2 E2, x ∈ H(S3)x be a unit vector and let us set
x =

(
x1 , x2). Then

e−s(x) ≤
∣∣g(x)x

∣∣2 ≤ es(x) ≤ K e−s(x) ≤ K.

Similarly
1
K
≤
∣∣g(x)x

∣∣2 .

2.5. Quasiconformality to the Standard Sphere

An interesting particular case of the CR embedding problem was considered by E.
Barletta and S. Dragomir (cf. [10]) who asked which strictly pseudoconvex CR manifolds
M, of CR dimension n, can be globally embedded as the standard sphere S2n+1 ⊂ Cn+1

with the ordinary CR structure T1,0
(
S2n+1) induced by the complex structure of Cn+1.

Their findings are that the Pontrjagin forms of the Fefferman metric Fθ ∈ Lor
[
C(M)

]
are

CR invariants of M (and when a certain Pontrjagin form P vanishes (i.e., P = 0), the
corresponding transgression class

[
T(P)

]
is a CR invariant, as well) and among those CR

invariants, one pinpoints obstructions to the posed question (i.e., whether M and S2n+1 are
CR equivalent).



Mathematics 2022, 10, 371 27 of 40

A weaker version of E. Barletta and S. Dragomir’s problem (cf. op. cit.) consistent with
the formulation of our Problem 1, is to ask which strictly pseudoconvex CR manifolds M, of
CR dimension n, are K-quasiconformally equivalent to the standard sphere S2n+1. As with
Problem 1, the question can be asked—and it is especially meaningful to ask—when M
fails to be globally embeddable. In the spirit of the present paper, we confine the question
to the case of 3-dimensional (i.e., n = 1) CR manifolds and then to the particular case of
Rossi’s spheres (

M, H
)
∈
{(

S3 , H(t)
)

: |t| < 1
}

.

Problem 3. Find a function K : (−1, 1)→ (1, +∞) and a family { ft}|t|<1 of K(t)-quasiconformal
maps ft : S3 → S3 of the Rossi sphere

(
S3 , H(t)

)
onto the standard sphere

(
S3 , T1,0(S3)

)
.

Of course f0 = 1S3 : S3 → S3 is a CR equivalence of
(
S3 , H(0)

)
and itself

(
S3 , T1,0(S3)

)
.

Yet given a constant K > 1 and a value of the parameter 0 < |t| < 1, the identity mapping
1S3 is not K-quasiconformal in general, and the pair (K, t) is subject to constraints.

Theorem 4. Let K > 1 and 0 < |t| < 1 such that f = 1S3 is a K-quasiconformal map of(
S3 , H(t)

)
onto

(
S3 , T1,0(S3)

)
. Then

K ≥ 1 + |t|
1− |t| . (63)

Proof. Note that f = 1S3 is a contact transformation f : S3 → S3 with λ( f ) = λ( f ; θ, θ) = 1.
Let us consider the (globally defined) frames of H(S3)

E1 = T1 + T1 , E2 = i
(
T1 − T1

)
,

Et
1 = Lt + Lt = (1 + t)E1 , Et

2 = i
(

Lt − Lt
)
= (1− t)E2 .

The complex structures Jt : H(S3)→ H(S3) and J = J0 : H(S3)→ H(S3) (determined
by the CR structuresH(t) and T1,0(S3)) are related by

JtE1 =
1

1 + t
JtEt

1 =
1

1 + t
Et

2 =
1− t
1 + t

E2 =
1− t
1 + t

JE1

and similarly,

JtE2 =
1 + t
1− t

JE2 .

Recall that
(dθ)(E1 , E2) = 2 Gθ

(
T1 , T1

)
= 1.

Then, for any X = X1E1 + X2E2 ∈ H(S3)

Gt
θ

(
X , X

)
= (dθ)

(
X, JtX

)
=

1− t
1 + t

(
X1)2

+
1 + t
1− t

(
X2)2

so that the Levi forms of the pseudohermitian manifolds
(
S3, H(t), θ

)
and

(
S3, T1,0(S3), θ

)
are related by

Gt
θ(X, X) =

1
1− t2 Gθ(X, X) +

t
1− t2

[
(t− 2)

(
X1)2

+ (t + 2)
(
X2)2

]
=

=
1− t
1 + t

Gθ(X, X) +
4t

1− t2

(
X2)2

=
1 + t
1− t

Gθ(X, X)− 4t
1− t2

(
X1)2 .
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To establish the lower bound (63) on K, we distinguish two cases, as (I) t > 0 or
(II) t < 0. In the first case the K-quasiconformality of f = 1S3

1
K

Gθ(X, X) ≤ Gt
θ

(
X, X) ≤ K Gθ(X, X) (64)

for X = E2 yields

K Gθ(E2 , E2) ≥ Gt
θ(E2 , E2) =

1 + t
1− t

Gθ(E2 , E2)

hence,

K ≥ 1 + t
1− t

.

In the second case, let us set X = E1 in (64) so that

K Gθ(E1 , E1) ≥ Gt
θ(E1 , E1) =

1− t
1 + t

Gθ(E1 , E1)

hence
K ≥ 1− t

1 + t
.

The bound (63) is consistent with A. Korányi and H. Reimann’s theorem. Indeed,
if µ f (t) : H(t) → H(t) is the complex dilation of f = 1S3 , then ‖µ f ‖ = |t| and (63) is a
corollary of (55) in Theorem 3.

2.6. Fefferman’s Metrics

Let
(

N, T1,0(N)
)

be a nondegenerate 3-dimensional CR manifold, and let Θ ∈ P+(N).
Let {TN

1 } be a local frame of T1,0(N), defined on the open set V ⊂ N. Let TN ∈ X(N)
be the Reeb vector field of (N, Θ). Let {Θ1} be the corresponding adapted coframe,
i.e., Θ1(TN

1
)
= 1, Θ1(TN

1

)
= 0 and Θ1(TN) = 0. Let f : S3 → N be a contact transforma-

tion with λ( f ) = λ( f ; θ, Θ) > 0. Here, θ is the canonical pseudohermitian structure on S3

(given by (7)). Let f ∗ : Ωp(N)→ Ωp(S3) be the pullback by f of differential p-forms on N,
p ∈ {1, 2, 3}. Then,

f ∗ Θ = λ( f ) θ, f ∗ Θ1 = f 1
1 θ1 + f 1

1 θ1 + f 1
0 θ.

Next, we consider the canonical circle bundles

S1 → C
(
S3 , H(t)

)
↓ πt

S3

S1 → C
(
S3 , H f

)
↓ π f

S3

S1 → C
(

N , T1,0(N)
)

↓ πN

N

(so that π0 = π (cf. our Section 2.1.5)) and the Fefferman metrics

Ft
θ = F

(
H(t), θ

)
∈ Lor

[
C
(
S3 , H(t)

)]
,

Ff = F
(
H f , θ

)
∈ Lor

[
C
(
S3 , H f

)]
,

FΘ ∈ Lor
[
C
(

N, T1,0(M)
)]

,
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(so that F0
θ = Fθ). We also write briefly C(N) = C

(
N, T1,0(M)

)
. The principal bundle

S1 → C
(
S3 , H(t)

)
→ S3 is described in Section 2. In addition, every c ∈ C(N)p with

p ∈ V may be represented as

c =
[
Λ
(
Θ ∧Θ1)

p

]
, Λ ∈ C \ {0}.

To describe S1 → C
(
S3 , H f

)
→ S3, we recall that, given a frame {Z1} ⊂ C∞(U, H),

the CR structureH f is the span of

L f = Z1 − µ1
1 Z1 ∈ C∞(H f

)
, µ1

1 =
f 1
1

f 1
1

,

f A
B = f A

B
(
· , H

)
, H ∈ CR

[
H(S3)

]
, A, B ∈ {1, 1}.

Let {θ1} and {θ1
f } be the adapted coframes determined by

θ1(Z1
)
= 1, θ1(Z1

)
= 0, θ1(T) = 0,

θ1
f
(

L f
)
= 1, θ1

f
(

L f
)
= 0, θ1

f (T) = 0.

Then
θ1

f =
1

1−
∣∣µ1

1

∣∣2 (θ1 + µ1
1 θ1
)

and every c ∈ C
(
S3 , H f

)
x may be (locally) represented as

c =
[
α
(
θ ∧ θ1

f
)

x

]
=
[
α
(
θ ∧ θ1 + µ1

1 θ1)
x

]
, α ∈ C \ {0}.

Every (2, 0)-form on N is locally represented as Ω = Λ θ ∧Θ1 for some Λ ∈ C∞(V, C
)
.

Then [by f 1
1
= µ1

1
f 1
1 ]

f ∗Ω = f 1
1 Λ f λ( f ) θ ∧ θ1

f

where Λ f = Λ ◦ f .

Proposition 1. Let f : S3 → N be a contact transformation with λ( f ) > 0 and let H ∈
CR
[
H(S3)

]
be a CR structure on S3 whose Levi distribution is H(S3). The pullback f ∗ : Ω2(N)→

Ω2(S3) induces a C∞ diffeomorphism

C( f ) : C(N)→ C
(
S3 , H f

)
,

C( f )(C) =
[

f 1
1 (x)Λ

(
θ ∧ θ1 + µ1

1 θ ∧ θ1)
x

]
, (65)

for every C ∈ C(N) f (x) locally represented as

C =
[
Λ
(
Θ ∧Θ1)

x

]
, Λ ∈ C, x ∈ U.

Proof. Let y ∈ N and let V ⊂ N be an open neighborhood of y, the domain of a (local)
frame {TN

1 } ⊂ C∞(V, T1,0(N)
)
. Let C ∈ C(N)y and let us set x = f−1(y) ∈ U = f−1(V).

Then C =
[
Λ (Θ ∧Θ1)y

]
for some Λ ∈ C \ {0} and we set

C( f )(C) =
[
Λ
{

f ∗
(
Θ ∧Θ1)}

x

]
thus yielding (65). The definition of C( f )(C) does not depend upon the choice of local
frame {TN

1 } about y = f (x).
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The investigation of the metric properties of C( f ) [in particular, the calculation of
C( f )∗ Ff − Ft

θ forH ∈
{
H(t) : |t| < 1

}
] is an open problem.

3. Sobolev Solutions to Beltrami’s Equation

The purpose of this section is to address the problem of solving the Beltrami equations

Lt(g) = µ
(
· , t
)

Lt(g) , |t| < 1, (66)

under appropriate assumptions on a given family of functions µ
(
· , t
)

: S3 → C, |t| < 1.
To solve (66), we follow the approach by A. Koranyi and H. Reimann (cf. [3], pp. 69–74).
There, one looks for weak solutions, in a Folland–Stein space, to the Beltrami equation

V( f ) = µ V( f ), V ≡ ∂

∂ζ
+ i ζ

∂

∂τ
,

on the Heisenberg group H1 = C×R, for a given function µ : H1 → C such that ‖µ‖∞ < 1.
Our problem (66) is formulated on the sphere S3, rather than the Heisenberg group H1.
Of course the sphere minus a point and the Heisenberg group may be identified by the
Cayley transform, and we profit from certain ideas by C-Y. Hsiao and P-L. Yung (cf. [4]) to
transpose (66) on H1. Equation (66) may also be written as

Z(g) =
µ
(
· , t
)
− t

1− t µ
(
· , t
) Z(g) (67)

where Z = T1 = w ∂/∂z − z ∂/∂w. By a change of dependent variable f = g ◦ H−1 or
g = f ◦ H, Equation (67) goes over to

u V( f ) =
λ
(
· , t
)
− t

1− t λ
(
· , t
) u V( f ), (68)

λ(x, t) = µ
(

H−1(x), t
)
, x ∈ H1 , |t| < 1.

Here, H = ψ−1 ◦ C : S3 \ {(0, −1)} → H1 is the C∞ diffeomorphism in Section 2.1.6.
Equation (68) is central to the present section, and it is our purpose to solve it by an iterative
argument relying on Banach’s fixed-point theorem.

Let S
(
H1
)

be the Schwartz class, consisting of all functions ϕ ∈ C∞(R3) such that
pα, β(ϕ) < ∞ for any α, β ∈ Z3

+. Here {pα, β : α, β ∈ Z3
+} is the separating family of

semi-norms on C∞(R3) given by

pα, β(ϕ) = sup
x∈R3

∣∣xα Dβ ϕ(x)
∣∣.

If g ∈ S
(
H1
)
, then a necessary condition for solving

V( f ) = g (69)

(the inhomogeneous tangential Cauchy–Riemann equation on H1) is that g ∗ S = 0 (i.e.,
g must be orthogonal to the kernel of V) where

S
(
ζ, τ

)
=

1

π2
(
|ζ|2 + i τ

)2 ,

(
g ∗ S

)
(x) =

∫
H1

S
(
y−1x

)
g(y) dy.
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The canonical solution to (69) (i.e., the solution orthogonal to the kernel of V) is
f = g ∗ k, where

k
(
ζ, τ

)
=

1
π2

ζ(
τ + i

∣∣ζ∣∣2)(τ − i
∣∣ζ∣∣2) .

Cf. P.C. Greiner, J.J. Kohn and E.M. Stein [7]. Let us set

b
(
ζ, τ

)
=
(
Vk
)
(ζ, τ) =

2i
π2

ζ
2(

τ + i
∣∣ζ∣∣2)(τ − i

∣∣ζ∣∣2)
so that

f = g ∗ k =⇒ V( f ) = g ∗V(k) = g ∗ b = V( f ) ∗ b.

The kernel b
(
ζ, τ

)
is homogeneous [with respect to the parabolic dilations δs

(
ζ, τ

)
=(

s ζ, s2 τ
)

on the Heisenberg group H1 (with s > 0)] of degree −4 and∫
Σ2

b
(
ζ, τ

)
dσ = 0.

Here Σ2 = Σ2(1), and

Σ2(r) = {x ∈ H1 : |x| = r},

|x| =
(
|z|4 + t2)1/4 , x =

(
ζ, τ

)
∈ H1 ,

is the Heisenberg sphere of radius r > 0. Therefore (by a result of A. Korányi and S.
Vági [11]) for every 1 < p < ∞ the convolution operator B(g) = g ∗ b extends from S

(
H1
)

to a bounded operator on Lp(H1 , θ0
)
. Additionally, k

(
ζ, τ

)
is homogeneous of degree −3

so that the convolution operator K(g) = g ∗ k extends from S
(
H1
)

to a bounded operator

K : Lp(H1 , θ0
)
→ Lq(H1 , θ0

)
,

1
q
=

1
p
− 1

4
, 1 < p < q < ∞.

Cf. G.B. Folland and E.M. Stein [12]. Let W1,2
E
(
H1 , θ0

)
be the Folland–Stein space of all L2

functions on H1 admitting weak E-derivatives. Let h ∈ C∞(H1
)

such that V(h) = 0. Let
us look for a solution f ∈ L2(H1 , θ0

)
to the Beltrami Equation (68) such that f − h ∈

W1,2
E
(
H1 , θ0

)
. To this end, we set

g = V
(

f − h
)
.

Note that if f were C1, then we would have V( f ) = g and

V( f ) = V( f − h) + V(h) = B(g) + V(h).

At this point, we substitute V( f ) and V( f ) into Equation (68), respectively, by g and
B(g) + V(h) so as to obtain

u g =
λ
(
· , t
)
− t

1− t λ
(
· , t
) u
[
B(g) + V(h)

]
. (70)

Solving for g in (70) is equivalent to seeking a fixed point of

Ft(g) =
λ
(
· , t
)
− t

1− t λ
(
· , t
) [B(g) + V(h)

] ( u
|u|

)2
.
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Let us set

α(x, t) =
λ
(
x, t
)
− t

1− t λ
(
x, t
) [ u(x)
|u(x)|

]2

, x ∈ H1 , |t| < 1,

and consider the recurrent sequence

g0 = 0, gν+1 = Ft
(

gν

)
, ν ≥ 0.

Then

gν+1 =
ν

∑
k=0

[
α( · , t) B

]k(
α( · , t)V(h)

)
, ν ≥ 0.

Then a formal solution to (70) is

g =
∞

∑
ν=0

[
α( · , t) B

]ν(
α( · , t)V(h)

)
. (71)

The series (71) converges in L2(H1 , θ0
)

provided that

Ft : L2(H1 , θ0
)
→ L2(H1 , θ0

)
, |t| < 1,

are contractions. From now on, we assume that
{

µ
(
· , t
)}
|t|<1 is a smooth 1-parameter

family of measurable functions µ
(
· , t
)

: S3 → C of compact support

Supp
[
µ
(
· , t
)]
⊂ S3 \ {(0, −1)}, |t| < 1,

such that ∥∥µ
(
· , t
)∥∥

∞ = ess supp∈S3

∣∣µ(p, t
)∣∣ < 1− |t|

1 + |t| .

The choice of the upper bound on the essential supremum of
∣∣µ( · , t

)∣∣ will be ex-
plained in a moment. As a consequence of our choice, the function λ

(
· , t
)

has compact
support Supp

[
λ
(
· , t
)]
⊂ H1 and

∥∥λ
(
· , t
)∥∥

∞ <
1− |t|
1 + |t| . (72)

Then α
(
· , t
)

has compact support Suppα
(
· , t
)
⊂ H1 and∥∥α

(
· , t
)∥∥

∞ = inf
{

C > 0 :
∣∣α(x, t)

∣∣ ≤ C a.e. x ∈ H1
}
=

= inf

{
C > 0 :

∣∣∣∣∣ λ
(
x, t
)
− t

1− t λ
(
x, t
) ∣∣∣∣∣ ≤ C a.e. x ∈ H1

}
and hence (72) yields

Lemma 15. ∥∥α
(
· , t
)∥∥

∞ < 1 (73)

for every |t| < 1.

Proof. To prove (73), we ought to choose 0 < C0 < 1 such that∣∣∣∣∣ λ
(
x, t
)
− t

1− t λ
(
x, t
) ∣∣∣∣∣ ≤ C0 a.e. x ∈ H1 .



Mathematics 2022, 10, 371 33 of 40

Yet ∣∣∣∣∣ λ
(
x, t
)
− t

1− t λ
(
x, t
) ∣∣∣∣∣ ≤

∣∣λ(x, t
)∣∣+ ∣∣t∣∣

1−
∣∣t∣∣ ∣∣λ(x, t

)∣∣
so it suffices to choose 0 < C0 < 1 such that∣∣λ(x, t

)∣∣+ ∣∣t∣∣
1−

∣∣t∣∣ ∣∣λ(x, t
)∣∣ ≤ C0 a.e. x ∈ H1

or ∣∣λ(x, t
)∣∣ ≤ C0 − |t|

1 + |t|C0
a.e. x ∈ H1 .

Therefore, one ought to choose 0 < C0 < 1 such that

∥∥λ
(
· , t
)∥∥

∞ ≤
C0 − |t|

1 + |t|C0
⇐⇒ C0 ≥

∥∥λ
(
· , t
)∥∥

∞ + |t|
1− |t|

∥∥λ
(
· , t
)∥∥

∞

which is possible only provided that∥∥λ
(
· , t
)∥∥

∞ + |t|
1− |t|

∥∥λ
(
· , t
)∥∥

∞

< 1

or equivalently ∥∥λ
(
· , t
)∥∥

∞ <
1− |t|
1 + |t|

which is (72).

As α
(
· , t
)
∈ L2(H1 , θ0

)
and Supp

[
α
(
· , t
)]

is compact, it must be that α
(
· , t
)

V(h) ∈
L2(H1 , θ0

)
. Then Ft is a map of L2(H1 , θ0

)
into L2(H1 , θ0

)
and for any g, v ∈ L2(H1 , θ0

)
∥∥Ft
(

g + v
)
− Ft

(
g
)∥∥

Lp(H1)
=
∥∥α( · , t) B(v)

∥∥
Lp(H1)

≤
∥∥α( · , t) B

∥∥ ∥∥v
∥∥

Lp(H1)

so that Ft is a contraction provided that∥∥α( · , t) B
∥∥ < 1. (74)

If this is the case, the series (71) converges in L2(H1 , θ0
)
. Moreover, if the sum g of

the series (71) satisfies the integrability condition

g ∗ S = 0 (75)

then solving for f in V
(

f − h
)
= g gives the solution f to the Beltrami Equation (68)

f = g ∗ k + h, f − h ∈W1,2
E
(
H1 , θ0

)
.

The property f − h ∈W1,2
E
(
H1 , θ0

)
of the solution describes its holomorphic behavior

at ∞. The operator norm in (75) is

∥∥α( · , t)B
∥∥ = sup

{∥∥α( · , t) B(g)
∥∥

L2(H1 , θ0)∥∥g
∥∥

L2(H1 , θ0)

:
g ∈ L2(H1 , θ0

)
,

g 6= 0

}
.

To compute the operator norm (and prove (75)), we need to represent B as a multiplier
on the Fourier transform. For every λ ∈ R \ {0} we consider the space

Hλ = L2H
(
C, γλ

)
= O(C) ∩ L2(C, γλ

)
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of all holomorphic functions φ : C→ C such that

∥∥φ
∥∥

γλ
=

(
|λ|
π

∫
C

∣∣φ(z)∣∣2 γλ(z) d m(z)
)1/2

< ∞ ,

γλ(z) = exp
(
− |λ| |z|2

)
,

where m is the Lebesgue measure on R2. Then Hλ is a Hilbert space with the scalar product

〈
φ , ψ

〉
Hλ

=
|λ|
π

∫
C

φ(z)ψ(z) γλ(z) d m(z).

The Bargmann representation of the Heisenberg group H1 is the unitary representation
of H1 on Hλ given by

Tλ : H1 → EndC
(
Hλ

)
,

[
Tλ(ζ, τ)φ

]
(z) =


exp

(
−λ

2
(
iτ + |ζ|2

)
− λ ζ z

)
φ(z + ζ) if λ > 0,

exp
(
−λ

2
(
iτ − |ζ|2

)
+ λ ζ z

)
φ(z + ζ) if λ < 0,

(ζ , τ) ∈ H1 , φ ∈ Hλ , z ∈ C.

Lemma 16. Tλ

(
ζ, τ

)
= T−λ

(
ζ , −τ

)
.

Let h1 be the Lie algebra of H1. The same symbol Tλ will denote the induced represen-
tation of the Lie algebra h1 on Hλ

Tλ : h1 → EndC
(
Hλ

)
, Tλ(A) = (d0Tλ)A0 , A ∈ h1 .

The Lewy operator V = ∂
/

∂ζ − i ζ ∂
/

∂τ and the Reeb vector field ∂/∂τ are known to
be left invariant. Hence, h1 ⊗R C is the span of {V, V , ∂/∂τ}.

Lemma 17.

(i) If λ > 0 then

Tλ

(
V
)
=

∂

∂z
, Tλ

(
V
)
= −λ z, Tλ

(
∂

∂τ

)
= − i λ

ζ
.

(ii) If λ < 0 then

Tλ

(
V) = λ z, Tλ

(
V
)
=

∂

∂z
, Tλ

(
∂

∂τ

)
= − i λ

ζ
.

(iii) Tλ : h1 → EndC
(
Hλ

)
is a unitary representation.

The Fourier transform at λ of a function f ∈ S
(
H1
)

is the operator

Tλ( f ) : Hλ → Hλ ,[
Tλ( f )φ

]
(z) =

∫
H1

f (ζ, τ)
[
Tλ(ζ, τ)φ

]
(z) d ξ d η dτ ,

φ ∈ Hλ , z ∈ C.

Here ζ = ξ + i η are the real and imaginary parts of ζ. We recall that a bounded linear
operator A : Hλ → Hλ is an operator of trace class if

∥∥A
∥∥

1 = Tr
∣∣A∣∣ :=

∞

∑
n=1

〈(
A∗A

)1/2
φn , φn

〉
λ
< ∞
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for some complete orthonormal system {φn : n ≥ 1} ⊂ Hλ (and thus for all). If this is the
case, then the trace of A

Tr A :=
∞

∑
ν=1

〈
Aφn , φn

〉
λ

is an absolutely convergent series, and its sum is independent of the choice of a complete
orthonormal system in Hλ.

Lemma 18. The Fourier transform Tλ( f ) : Hλ → Hλ of every f ∈ S
(
H1
)

is an operator of
trace class.

The norm of Tλ( f ) (the trace norm) is defined by∥∥Tλ( f )
∥∥2

= Tr
{

T∗λ( f ) Tλ( f )
}

where T∗λ( f ) = Tλ( f )∗ (the adjoint of Tλ( f )).

Lemma 19. Let f ∈ S(H1).

(i) The inversion formula for the Fourier transform is

f (ζ, τ) =
1

4π2

∫
R

Tr
{

T∗λ(ζ, τ) Tλ( f )
}
|λ| dλ . (76)

(ii) The Plancherel formula for the Fourier transform is

‖ f ‖2 =
1

4π2

∫
R

∥∥Tλ( f )
∥∥2 |λ| dλ (77)

where ‖ f ‖ is the L2 norm of f .

Cf. J. Faraut [13]. On the basis of the formulas (76) and (77), the Fourier transform
Tλ( f ) may be extended from functions of Schwartz class f ∈ S(H1) to square integrable
functions f ∈ L2(H1 , θ0).

Lemma 20. The Fourier transform of the convolution product

( f ∗ g)(y) =
∫
H1

f (x) g(x−1y) d x, f , g ∈ S(H1),

is given by
Tλ( f ∗ g) = Tλ( f ) Tλ(g).

Lemma 21. The system {φn : n ≥ 1} ⊂ Hλ given by

φn(z) =

√∣∣λ∣∣n
n!

zn , z ∈ C, n ∈ N,

is a complete orthonormal system in Hλ.

Let
tλ
n,m(ζ, τ) =

〈
Tλ(ζ, τ)φm , φn

〉
λ

be the Fourier coefficients of the operator Tλ(ζ, τ) with respect to {φn}n≥1. This is an
infinite matrix given by the following.



Mathematics 2022, 10, 371 36 of 40

Lemma 22.

(i) If λ > 0 and m ≥ n, then
tλ
n,m(ζ, τ) =

=

√
n!
m!
(√

λ ζ
)m−n exp

(
− iλτ

2

)
exp

(
−λ|ζ|2

2

)
Lm−n

n
(
λ|ζ|2

)
.

(ii) If λ > 0 and m < n, then

tλ
n,m(ζ, τ) = tλ

m,n(−ζ, −τ) =

=

√
m!
n!
(
−
√

λ ζ
)n−m exp

(
− iλτ

2

)
exp

(
−λ|ζ|2

2

)
Ln−m

m
(
λ|ζ|2

)
.

(iii) If λ < 0, then

tλ
n,m(ζ, τ) = t|λ|n,m(ζ, τ).

Cf. A. Korányi and H.M. Reimann [3], pp. 70–71. Here,

Lα
n(x) =

n

∑
k=0

(−1)k

k! (n− k)!
Γ(n + α + 1)
Γ(k + α + 1)

xk , α > −1, x ≥ 0,

are the Laguerre polynomials. From now on, the Fourier transform of a function f ∈ S
(
H1
)

will be represented as an infinite matrix

f̂ (λ) =
[

f̂ λ
m,n
]

m,n∈N , f̂ λ
m,n =

〈
Tλ( f )φn , φm

〉
γλ

,

so that

Tλ( f )φm =
∞

∑
n=1

f̂ λ
n,m φn .

Lemma 23. The Fourier transform b̂(λ) =
[
b̂λ

m,n
]

of

b
(
ζ, τ

)
= Vk

(
ζ, τ

)
=

2i
π2

ζ
2(

τ + i
∣∣ζ∣∣2)(τ − i

∣∣ζ∣∣2)
is given by

b̂λ
m,n =


−δm+2, n

√
m + 1

m
if λ > 0,

δm−2, n

√
m− 2
m− 1

if λ < 0.

(78)

Let us consider the subspaces L2
±
(
H1 , θ0

)
⊂ L2(H1 , θ0

)
defined by

L2
−
(
H1 , θ0

)
=
{

f ∈ L2(H1 , θ0
)

: f̂ (λ) = 0 a.e. λ > 0
}

,

L2
+

(
H1 , θ0

)
= L2(H1 , θ0

)
	 L2

−
(
H1 , θ0

)
.

Lemma 24. B L2
±
(
H1 , θ0

)
⊂ L2

±
(
H1 , θ0

)
.

Next, for every k ∈ Z let us set

Uk =
{

f ∈ L2(H1 , θ0
)

: f
(
ζ eiϕ , τ

)
= ei k ϕ f

(
ζ, τ

)}
.
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Lemma 25. L2(H1 , θ0
)
=
⊕

k∈Z Uk.

Lemma 26.

(i) If f ∈ Uk then
m− n 6= +k =⇒ f̂ λ

m,n = 0 for a.e. λ > 0,

m− n 6= −k =⇒ f̂ λ
m,n = 0 for a.e. λ < 0.

(ii) B Uk ⊂ Uk+2.

Next let us consider the complete orthogonal sum

Dj =
⊕̂

k≤j
Uk .

Lemma 27.

(i) The complete orthogonal sums {Dj}j∈Z satisfy the following multiplication law

f ∈ Dj and α
(
· , t
)
∈ Dm ∩ L∞(H1 , θ0

)
=⇒

=⇒ f · α( · , t) ∈ Dj+m .

(ii) L2
±
(
H1 , θ0

)
are multiplication invariant, i.e.,

f ∈ L2
±
(
H1 , θ0

)
and α

(
· , t
)
∈ L2

±
(
H1 , θ0

)
∩ L∞(H1 , θ0

)
=⇒

=⇒ f · α
(
· , t
)
∈ L2

±
(
H1 , θ0

)
.

Theorem 5. Let h ∈ CR∞(H1
)

be a CR function [i.e., V(h) = 0] and let us assume that
α
(
· , t
)
∈ L∞(H1

)
. Let us assume that one of the following conditions is satisfied

(1) α
(
· , t
)
, α
(
· , t
)

V(h) ∈ L2
+

(
H1 , θ0

)
and

∥∥α
(
· , t
)∥∥

∞ <
1√
2

.

(2) α
(
· , t
)
∈ D−2, α

(
· , t
)

V(h) ∈ D−1 and
∥∥α
(
· , t
)∥∥

∞ <
1√
2

.

(3) α
(
· , t
)
∈ D−2 ∩ L2

−
(
H1 , θ0

)
, α
(
· , t
)

V(h) ∈ D−1 ∩ L2
−
(
H1 , θ0

)
and

∥∥α
(
· , t
)∥∥

∞ < 1.

Then the Beltrami equation

u V( f ) =
λ
(
· , t
)
− t

1− t λ
(
· , t
) u V( f )

has a unique solution ft such that ft − h ∈W1,2
E
(
H1 , θ0

)
.

Proof. We ought to show that the series

g =
∞

∑
ν=0

[
α( · , t) B

]ν(
α( · , t)V(h)

)
converges in L2(H1 , θ0

)
, and its sum g satisfies the integrability condition g ∗ S = 0.

For every f ∈ L2(H1 , θ0), its Fourier transform at λ is

Tλ( f ) φn =
∞

∑
m=1

f̂ λ
m,n φm
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and hence, its trace norm is

∥∥Tλ( f )
∥∥2

= Tr {T∗λ( f ) Tλ( f )} =
∞

∑
n=1

〈
T∗λ( f ) Tλ( f ) φn , φn

〉
γλ

=

=
∞

∑
n=1

∥∥Tλ( f ) φn
∥∥2

=
∞

∑
n,m=1

∣∣ f̂ λ
m,n
∣∣2 .

Then

Tλ

(
B f
)

φn = Tλ

(
f ∗ b

)
= Tλ( f ) Tλ(b) φn =

∞

∑
m,k=1

b̂λ
m,n f̂ λ

k,m φk

i.e., (̂
B f
)λ

k,n = ∑
m

b̂λ
m,n f̂ λ

k,m =

[by (78) in Lemma 23]

= ∑
m

f̂ λ
k,m


−δm+2, n

√
m + 1

m
if λ > 0

δm−2, n

√
m− 2
m− 1

if λ < 0

=


−
√

n− 1
n− 2

f̂ λ
k, n−2 if λ > 0

√
n

n + 1
f̂ λ
k, n+2 if λ < 0

so that

∥∥Tλ(B f )
∥∥2

= ∑
n, m


n− 1
n− 2

∣∣∣ f̂ λ
m, n−2

∣∣∣2 if λ > 0

n
n + 1

∣∣∣ f̂ λ
m, n+2

∣∣∣2 if λ < 0

= ∑
k, m


k + 1

k

∣∣∣ f̂ λ
m, k

∣∣∣2 if λ > 0

k− 2
k− 1

∣∣∣ f̂ λ
m, k

∣∣∣2 if λ < 0

and hence [by (k− 2)/(k− 1) < 1 and (k + 1)/k < 2]∥∥Tλ(B f )
∥∥ ≤ √2

∥∥Tλ( f )
∥∥

and then ∥∥B f
∥∥ ≤ √2

∥∥ f
∥∥ , f ∈ L2(H1 , θ0). (79)

Similarly, if f ∈ L2
−
(
H1 , θ0

)
then

∥∥B f
∥∥2

=
1

4π2

∫
R

∥∥Tλ

(
B f
)∥∥ |λ| d λ =

[as f̂ (λ) = 0 for a.e. λ > 0]

=
1

4π2

∫ 0

−∞
∑
n, m

n− 2
n− 1

∣∣∣ f̂ λ
m, n

∣∣∣2 |λ| d λ

yielding ∥∥B f
∥∥ ≤ ∥∥ f

∥∥ , f ∈ L2
−(H1 , θ0). (80)

Let us examine now the three assumptions in Theorem 5. By (79) and
∥∥α
(

, t
)∥∥

∞ <
1√
2

,

it follows that the operator norm of

α
(
· , t) B : L2(H1 , θ0)→ L2(H1 , θ0)
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is ‖α( · , t) B‖ < 1, and hence

∞

∑
ν=0

[
α( · , t) B

]ν[
α( · , t)Vh

]
converges to some gt ∈ L2(H1 , θ0).

(1) As α( · , t) ∈ L2
+

(
H1 , θ0

)
and α

(
· , t)Vh ∈ L2

+

(
H1 , θ0

)
and [by Lemma 24]

B
[
L2
+

(
H1 , θ0

)]
⊂ L2

+

(
H1 , θ0

)
it follows that gt ∈ L2

+

(
H1 , θ0

)
.

(2) As

Dk =
⊕̂

`≤k
U` , Dk+2 =

⊕̂
`≤k+2

U` =
⊕̂

`≤k
U`+2 ,

B
(
U`
)
⊂ U`+2 [by (ii) in Lemma 26]

one has
B
(

Dk
)
⊂ Dk+2 . (81)

It should be observed that (81) is independent of any of the assumptions in Theorem 5.
If α
(
· , t
)
∈ D−2 =

⊕̂
`≤−2U`, then (by (81)

α
(
· , t
)

B Dk ⊂ α
(
· , t
)
· Dk+2 ⊂

(by (i) in Lemma 27 with j = k + 2 and m = −2)

⊂ Dk

so that Dk is invariant by α
(
· , t
)

B. Moreover α
(
· , t
)

Vh ∈ D−1 yields gt ∈ D−1.
(3) If α

(
· , t
)
∈ D−2 ∩ L2

−
(
H1 , θ0

)
then α

(
· , t
)
∈ D−2 was already shown to imply

α
(
· , t
)

B Dk ⊂ Dk (here useful for k = −1). On the other hand (by B L2
−(H1 , θ0) ⊂

L2
−(H1 , θ0)),

α
(
· , t
)

B
{

D−1 ∩ L2
−(H1 , θ0)

}
⊂ D−1 ∩

{
α
(
· , t
)
· L2
−(H1 , θ0)

}
⊂

(by α
(
· , t
)
∈ L2

−(H1 , θ0
)
)

⊂ D−1 ∩ L2
−(H1 , θ0)

yielding gt ∈ D−1 ∩ L2
−(H1 , θ0). Summing up, under the assumptions (1)–(3) in

Theorem 5, the function gt belongs to one of the spaces

L2
+

(
H1 , θ0

)
, D−1 , D−1 ∩ L2

−
(
H1 , θ0

)
.

The proof of Theorem 5 may be completed by applying the following lemma:

Lemma 28. Let S ∈
{

L2
+

(
H1 , θ0

)
, D−1 , D−1 ∩ L2

−
(
H1 , θ0

)}
. For every g ∈ S, one has

ĝ(λ) Ŝ(λ) = 0. Equivalently, each g ∈ S satisfies the integrability condition g ∗ S = 0.

4. Conclusions and Open Problems

Sobolev-type solutions to the Beltrami equation

V( f ) = µ V( f ) (82)

on the Heisenberg group H1 were first produced by A. Korányi and H.M. Reimann [3],
relying on work by P.C. Greiner, J.J. Kohn and E.M. Stein [7], on the solution to the Lewy
equation V( f ) = g. We consider the Beltrami equations associated to the non-embeddable
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CR structures H(t), |t| < 1, on S3 as discovered by H. Rossi [1], and transplant said
equations on H1 by using the CR diffeomorphism H : U = S3 \ {(0, −1)} ≈ H1 (associated
with the Cayley map). This gives a 1-parameter family of first order PDEs (with variable
coefficients) on H1, similar to Korányi and Reimann’s Beltrami Equation (82), which may be
simultaneously treated by an outgrowth of Korányi and Reimann’s techniques (borrowed
from [7] for the part of complex analysis, and from J. Faraut [13] for the part of harmonic
analysis). It is an open problem whether the same CR diffeomorphism H may be used to
transplant Fourier calculus from H1 to the open set U ⊂ S3 (and whether the resulting
tools are effective in a direct study of Equations (3)). We expect the resulting local harmonic
analysis on S3 to be similar to that proposed by R.S. Strichartz [14]. Cf. also [15].

The success in [10] to discover obstructions to CR equivalence of a strictly pseudocon-
vex real hypersurface M ⊂ Cn+1 to the sphere S2n+1 (such as the first Pontrjagin form of
the Fefferman metric) prompts the question of whether (other) characteristic forms of Ft

θ
[the Fefferman metric of a Rossi sphere (S3, H(t))] may be identified as obstructions to
the existence of a K-quasiconformal map f : (S3 , H(t))→ (S3 , H(0)). Our discussion of
Fefferman’s metric in Sections 2.1.5 and 2.6 is only tentative, and a deeper study is relegated
to further work.
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