Polycarboxylate ether (PCE), a commonly used superplasticizer, is known to influence the morphology of ettringite during the early hydration of C3A- and ye’elimite-containing cements. According to existing theories, such morphological changes may be crucial to the expansive behavior of these cements. This paper studied the expansion of ye’elimite-anhydrite pastes and found the use of PCE to reduce expansion after 4 days of curing. Hydration studies were conducted by calorimetry, X-ray diffractometry, scanning electron microscopy, mercury intrusion porosimetry, inductively coupled plasma–optical emission spectrometry, and X-ray microtomography. The results show that the influences of PCE on the morphology of ettringite and the hydration of ye’elimite were quite small after 2 days. Based on the crystal growth theory, the range of pores in which ettringite can grow was calculated to explain the observed expansive behaviors. The presence of ettringite nano-crystals in aluminum hydroxide was also revealed and considered as a possible expansion mechanism.

Effect of polycarboxylate ether on the expansion of ye’elimite hydration in the presence of anhydrite

Antonio Telesca
Writing – Review & Editing
;
Milena Marroccoli
Investigation
;
2021-01-01

Abstract

Polycarboxylate ether (PCE), a commonly used superplasticizer, is known to influence the morphology of ettringite during the early hydration of C3A- and ye’elimite-containing cements. According to existing theories, such morphological changes may be crucial to the expansive behavior of these cements. This paper studied the expansion of ye’elimite-anhydrite pastes and found the use of PCE to reduce expansion after 4 days of curing. Hydration studies were conducted by calorimetry, X-ray diffractometry, scanning electron microscopy, mercury intrusion porosimetry, inductively coupled plasma–optical emission spectrometry, and X-ray microtomography. The results show that the influences of PCE on the morphology of ettringite and the hydration of ye’elimite were quite small after 2 days. Based on the crystal growth theory, the range of pores in which ettringite can grow was calculated to explain the observed expansive behaviors. The presence of ettringite nano-crystals in aluminum hydroxide was also revealed and considered as a possible expansion mechanism.
2021
File in questo prodotto:
File Dimensione Formato  
Jiaqi_Li.pdf

solo utenti autorizzati

Tipologia: Pdf editoriale
Licenza: Versione editoriale
Dimensione 8.55 MB
Formato Adobe PDF
8.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/147445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact