In the present paper, the non-conservative instability of a cantilever single-walled carbon nanotube (SWCNT) through nonlocal theory is investigated. The nanotube is modeled as clamped-free beam carrying a concentrated mass, located at a generic position, or in the presence of crack, and subjected to a compressive axial load, at the free end. Nonlocal Euler–Bernoulli beam theory is used in the formulation and the governing equations of motion and the corresponding boundary conditions are derived using an extended Hamilton’s variational principle. The governing equations are solved analytically. In order to show the sensitivity of the SWCNT to the values of an added mass, or crack and the influence of the nonlocal parameter and nondimensional crack severity coefficient on the fundamental frequencies values, some numerical examples have been performed and discussed. Also, the validity and the accuracy of the proposed analysis have been confirmed by comparing the results with those obtained from the literature.

Variational method for non-conservative instability of a cantilever SWCNT in the presence of variable mass or crack

De Rosa M. A.;Auciello N. M.;
2020-01-01

Abstract

In the present paper, the non-conservative instability of a cantilever single-walled carbon nanotube (SWCNT) through nonlocal theory is investigated. The nanotube is modeled as clamped-free beam carrying a concentrated mass, located at a generic position, or in the presence of crack, and subjected to a compressive axial load, at the free end. Nonlocal Euler–Bernoulli beam theory is used in the formulation and the governing equations of motion and the corresponding boundary conditions are derived using an extended Hamilton’s variational principle. The governing equations are solved analytically. In order to show the sensitivity of the SWCNT to the values of an added mass, or crack and the influence of the nonlocal parameter and nondimensional crack severity coefficient on the fundamental frequencies values, some numerical examples have been performed and discussed. Also, the validity and the accuracy of the proposed analysis have been confirmed by comparing the results with those obtained from the literature.
2020
File in questo prodotto:
File Dimensione Formato  
2021 Variational method for non-conservative instability of a.pdf

solo utenti autorizzati

Licenza: Dominio pubblico
Dimensione 497.99 kB
Formato Adobe PDF
497.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/144343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact