In this paper we continue the study of certain Bernstein-Chlodovsky operators B_n^∗ preserving the exponential function e^{2x} (x ≥0), recently introduced in [4]. In particular, we prove some Voronovskaya type theorems and we deduce some properties of the B_n^∗’s, such as saturation results. We also compare this new class of operators with the classical Bernstein-Chlodovsky ones, proving that the operators B_^∗ provide better approximation results for certain functions.

Voronovskaya type results for Bernstein-Chlodovsky operators preserving $e^{2x}$

Vita Leonessa
2020-01-01

Abstract

In this paper we continue the study of certain Bernstein-Chlodovsky operators B_n^∗ preserving the exponential function e^{2x} (x ≥0), recently introduced in [4]. In particular, we prove some Voronovskaya type theorems and we deduce some properties of the B_n^∗’s, such as saturation results. We also compare this new class of operators with the classical Bernstein-Chlodovsky ones, proving that the operators B_^∗ provide better approximation results for certain functions.
2020
File in questo prodotto:
File Dimensione Formato  
AcarCaMoGarrLeon.pdf

solo utenti autorizzati

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 283.17 kB
Formato Adobe PDF
283.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/143352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact