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In this paper we continue the study of certain Bernstein-Chlodovsky operators 
B∗

n preserving the exponential function e−2x (x ≥ 0), recently introduced in [4]. 
In particular, we prove some Voronovskaya type theorems and we deduce some 
properties of the B∗

n’s, such as saturation results. We also compare this new class of 
operators with the classical Bernstein-Chlodovsky ones, proving that the operators 
B∗

n provide better approximation results for certain functions.
Published by Elsevier Inc.

1. Introduction

In order to approximate functions defined on unbounded intervals, in 1937 Chlodovsky introduced and 
studied the following Bernstein-type operators

Bn,hn
(f)(x) =

n∑
k=0

f

(
hnk

n

)(
n

k

)(
x

hn

)k (
1 − x

hn

)n−k

for n ≥ 1, x ≥ 0, f belonging to a suitable space, and (hn)n≥1 being a sequence of strictly positive real 
numbers such that limn→∞ hn = +∞ (see [13]; see also [17, pp. 36–37]). Observe that the Bn,hn

’s are not 
positive operators, hence many authors worked with a positive modification of theirs, that for an abuse of 
notation we continue to denote by Bn,hn

. Such operators are known as Bernstein-Chlodovsky operators and 
they are defined by
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Bn,hn
(f)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
k=0

f

(
hnk

n

)(
n

k

)(
x

hn

)k (
1 − x

hn

)n−k

if 0 ≤ x ≤ hn ,

f(x) if x > hn

(1)

(see, e.g., [8,9]). For more recent developments on Bernstein-Chlodovsky operators and their variants we 
refer the interested readers to, e.g., [2,15,16]. In particular, Voronovskaya theorems for Bernstein-Chlodovsky 
operators and their generalizations have been deeply studied (see, for example, [1,5,9–11]).

Note that the operators Bn,hn
fix constant and linear functions. Motivated by the increasing interest in 

operators which preserve different functions in order to get better properties (for a survey on these topics 
see, e.g., [3]), in [4] we introduced a particular modification B∗

n of the operators (1) that allows to reproduce 
constants and the exponential function f2, where f2(x) = e−2x (x ≥ 0).

Approximation properties of the sequence (B∗
n)n≥1, both in spaces of continuous functions and in some 

weighted function spaces, can be found in [4], where we generally focused on uniform convergence behaviors. 
However, pointwise convergence has as a crucial role as uniform one. This fact directed us to describe 
pointwise approximation properties of the sequence (B∗

n)n≥1 in terms of pointwise Voronovskaya type results. 
We also obtain an asymptotic formula with respect to a weighted norm.

More precisely, we prove that the operators B∗
n are involved in an asymptotic formula with respect to 

a certain second-order degenerate differential operator. It can be shown, by using some results in [7], that 
this differential operator is the generator of a positive C0-semigroup in certain weighted spaces. It might 
be interesting to investigate the eventuality that such a semigroup can be represented in terms of iterates 
of the operators B∗

n, as an application of the classical Trotter representation theorem (see [8, Proposition 
1.6.7]).

In the paper, as a consequence of the asymptotic formula, we also deduce several properties of the 
operators B∗

n; in particular, by comparing the relevant asymptotic formulas, we prove that the B∗
n’s perform 

better than the operators Bn,hn
in approximating certain decreasing convex functions. Moreover, we obtain 

some saturation results, in the same spirit of [14].
The paper is organized as follows: after a section collecting the basic preliminaries, we proceed, in Section 

3, to present some Voronovskaya type theorems for the operators B∗
n. The paper ends with a section devoted 

to several applications of the results contained in Section 3.

2. Preliminaries

Throughout the paper, C([0, +∞[) stands for the space of all continuous real valued functions on [0, +∞[
and Cb([0, +∞[) for the space consisting of all functions in C([0, +∞[) which are also bounded. Cb([0, +∞[)
is a Banach lattice if endowed with the sup-norm ‖ · ‖∞ and the natural pointwise ordering. Moreover, we 
shall denote by C∗([0, +∞[) the Banach sublattice of Cb([0, +∞[) defined as

C∗([0,+∞[) = {f ∈ C([0,+∞[) : ∃ lim
x→+∞

f(x) ∈ R} .

The symbol UCb([0, +∞[) indicates the space of all uniformly continuous functions on [0, +∞[ that are 
also bounded.

Further, for every m ≥ 1, we define the weighted space

Em := {f ∈ C([0,+∞[) : sup
x≥0

wm(x)|f(x)| ∈ R},

endowed with the norm
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‖f‖m := sup
x≥0

wm(x)|f(x)| (f ∈ Em), (2)

where

wm(x) = 1
1 + xm

(x ≥ 0) .

We also need its natural subspace

E∗
m = {f ∈ Em : ∃ lim

x→+∞
wm(x)f(x) ∈ R} .

In [4] we introduced the modified Bernstein-Chlodovsky operators B∗
n defined as follows: for every n ≥ 1, 

f ∈ C∗([0, +∞[) and x ≥ 0,

B∗
n(f)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∑
k=0

f

(
hnk

n

)(
n

k

)(
1 − e−(2x)/n

1 − e−(2hn)/n

)k (
1 − 1 − e−(2x)/n

1 − e−(2hn)/n

)n−k

if 0 ≤ x ≤ hn

f(x) if x > hn .

(3)

The B∗
n’s preserve constants and B∗

n(f2) = f2, where f2(x) = e−2x (x ≥ 0). Further, for every n ≥ 1, B∗
n

is a positive linear operator from C∗([0, +∞[) into itself and ‖B∗
n‖C∗([0,+∞[) = 1.

Moreover, under the assumption

lim
n→∞

hn

n
= 0 , (4)

if f ∈ C∗([0, +∞[), then lim
n→∞

B∗
n(f) = f uniformly on [0, +∞[.

For sufficiently large n, B∗
n(E∗

m) ⊂ E∗
m and, if f ∈ E∗

m, then lim
n→∞

B∗
n(f) = f with respect to ‖ · ‖m.

We point out that, if f ∈ C∗([0, +∞[) and 0 ≤ x ≤ hn,

B∗
n(f)(x) := (Bn,hn

(f) ◦ rn)(x) (5)

for every n ≥ 1, where

rn(x) = hn
1 − e−(2x)/n

1 − e−(2hn)/n for 0 ≤ x ≤ hn. (6)

It can be useful to recall some properties of (rn)n≥1. First,

rn(0) = 0 , r n(hn) = hn , and 0 < rn(x) ≤ Mnx for every x > 0 , (7)

where

Mn := 2hn/n

1 − e−2hn/n
for every n ≥ 1. (8)

Note that Mn ≥ 1 and, under the assumption (4),

lim Mn = 1 . (9)

n→∞
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Moreover, for every n ≥ 1,

rn(x) ≥ x for any 0 ≤ x ≤ hn, (10)

and, under hypothesis (4),

lim
n→∞

rn = e1 (11)

pointwise on [0, +∞[, and uniformly on compact sub-intervals of [0, +∞[.
Coming back to the operators B∗

n, we now compute them in the functions exi , where for a given x ≥ 0
and i ∈ N,

exi (t) = (t− x)i (t ≥ 0).

In particular, we briefly write ei for the power functions e0
i .

Combining (5) with [11, Lemma 2.1], we get the following formulas: for every n ≥ 1,

B∗
n(e0) = e0 (12)

and, for 0 ≤ x ≤ hn,

B∗
n(e1)(x) = rn(x) , (13)

B∗
n(e2)(x) = n− 1

n
r2
n(x) + hn

n
rn(x) , (14)

B∗
n(e3)(x) = (n− 1)(n− 2)

n2 r3
n(x) + 3hn

n

n− 1
n

r2
n(x) + h2

n

n2 rn(x) , (15)

and

B∗
n(e4)(x) = (n− 1)(n− 2)(n− 3)

n3 r4
n(x) + 6hn

n

(n− 1)(n− 2)
n2 r3

n(x)

+ 7h
2
n

n2
n− 1
n

r2
n(x) + h3

n

n3 rn(x) .
(16)

Using (12)-(14) it is easy to see that, for any n ≥ 1 and x ∈ [0, hn],

B∗
n(ex1)(x) = rn(x) − x (17)

and

B∗
n(ex2)(x) = (rn(x) − x)2 − 1

n
r2
n(x) + hn

n
rn(x) . (18)

Moreover, from (12)-(16) it follows that, for any n ≥ 1 and x ∈ [0, hn],

B∗
n(ex4)(x) = (rn(x) − x)4 + h3

n

n3 rn(x) + h2
n

n2 rn(x)
[
7n− 1

n
rn(x) − 4x

]

+ 6hn

n
rn(x)

[
(n− 1)(n− 2)

n2 r2
n(x) − 2n− 1

n
xrn(x) + x2

]

+ r2
n(x)

[
−6n2 + 11n− 6

n3 r2
n(x) + 4x3n− 2

n2 rn(x) − x2 6
n

]
.

(19)

Finally note that, from definition (3), it follows that B∗
n(exi )(x) = 0 for i ≥ 1 and x > hn.
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Lemma 1. For x ≥ 0 and n sufficiently large,

∣∣∣∣ nhn
B∗

n(ex1)(x) − x

∣∣∣∣ ≤ x2αn + xβn , (20)

∣∣∣∣ nhn
B∗

n(ex2)(x) − x

∣∣∣∣ ≤ x3αn (Mn − 1) + x2
(

(Mn − 1)(βn + 1) + M2
n

hn

)
+ x (Mn − 1) , (21)

and

n

hn
B∗

n(ex4)(x) ≤ x5αn(Mn − 1)3 + x4γn + x3σn + x2τn + x
h2
n

n2 Mn , (22)

where (αn)n≥1, (βn)n≥1, (γn)n≥1, (σn)n≥1, (τn)n≥1 are suitable sequences of real numbers.

Proof. First note that for x = 0 the above formulas are easily verified thanks to (17)-(19), and the fact that 
rn(0) = 0 for every n ≥ 1.

Now fix x > 0; since hn → +∞ as n → ∞, for n large enough we have that hn ≥ x. Keeping (6) and 
(17) in mind, we may write

n

hn
B∗

n(ex1)(x) − x = x
n

hn

[
1 − e−2x/n

2x/n
2hn/n

1 − e−2hn/n
− 1 − hn

n

]

= x
n

hn

[(
1 − e−2x/n

2x/n − 1
)

2hn/n

1 − e−2hn/n
+ 2hn/n

1 − e−2hn/n
− 1 − hn

n

]
.

As a consequence,

∣∣∣∣ nhn
B∗

n(ex1)(x) − x

∣∣∣∣ ≤ x2 C

hn

2hn/n

1 − e−2hn/n
+ x

n

hn

∣∣∣∣ 2hn/n

1 − e−2hn/n
− 1 − hn

n

∣∣∣∣ ,
where we have used the inequality 

∣∣∣1−e−2x/n

2x/n − 1
∣∣∣ ≤ C x

n which holds for n large enough, where C does not 
depend on x and n.

Setting, for every n ≥ 1,

αn = C

hn

2hn/n

1 − e−2hn/n
(23)

and

βn = n

hn

2hn/n− (1 − e−2hn/n) − hn/n(1 − e−2hn/n)
1 − e−2hn/n

(24)

(note that βn ≥ 0) we get (20).
In order to achieve estimate (21), we observe that, thanks to (17) and (18),

n

hn
B∗

n(ex2)(x) − x =
(

n

hn
B∗

n(ex1)(x) − x

)
(rn(x) − x) + x(rn(x) − x) − 1

hn
r2
n(x) + (rn(x) − x).

Then, keeping (7)-(10) and (20) in mind,
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∣∣∣∣ nhn
B∗

n(ex2)(x) − x

∣∣∣∣
≤

∣∣∣∣ nhn
B∗

n(ex1)(x) − x

∣∣∣∣ (rn(x) − x) + x(rn(x) − x) + 1
hn

r2
n(x) + (rn(x) − x)

≤ (x3αn + x2βn) (Mn − 1) + x2
(
Mn − 1 + M2

n

hn

)
+ x(Mn − 1) .

Finally, by means of (17), (19) and (20), we get

n

hn
B∗

n(ex4)(x) =
(

n

hn
B∗

n(ex1)(x) − x

)
(rn(x) − x)3 + x(rn(x) − x)3

+ h2
n

n2 rn(x) + hn

n
rn(x)

[
7n− 1

n
rn(x) − 4x

]

+ 6rn(x)
[
(n− 1)(n− 2)

n2 r2
n(x) − 2n− 1

n
xrn(x) + x2

]

+ n

hn
r2
n(x)

[
−6n2 + 11n− 6

n3 r2
n(x) + 4x3n− 2

n2 rn(x) − x2 6
n

]

≤ (x2αn + xβn)(Mn − 1)3x3 + x4(Mn − 1)3

+ h2
n

n2 Mnx + hn

n
Mnx

2
[
7n− 1

n
Mn − 4

]

+ 6Mnx

[
(n− 1)(n− 2)

n2 (r2
n(x) − x2) − 2n− 1

n
x(rn(x) − x) + x2 2 − n

n2

]

+ n

hn
M2

nx
2
[
−6n2 + 11n− 6

n3 (r2
n(x) − x2) + 4x3n− 2

n2 (rn(x) − x) + x2 3n− 6
n3

]

≤ (x5αn + x4βn)(Mn − 1)3 + x4(Mn − 1)3

+ h2
n

n2 Mnx + hn

n
Mnx

2
[
7n− 1

n
Mn − 4

]

+ 6Mnx
3
[
(n− 1)(n− 2)

n2 (M2
n − 1) + 2n− 1

n
(Mn − 1) + 2 − n

n2

]

+ M2
nx

4

hn

(
−6n2 + 11n− 6

n2 (M2
n − 1) + 43n− 2

n
(Mn − 1) + 3n− 6

n2

)

= x5αn(Mn − 1)3 + x4γn + x3σn + x2τn + x
h2
n

n2 Mn ,

where, for every n ≥ 1,

γn = (βn + 1)(Mn − 1)3

+ M2
n

hn

(
−6n2 + 11n− 6

n2 (M2
n − 1) + 43n− 2

n
(Mn − 1) + 3n− 6

n2

)
,

(25)

σn = 6Mn

[
(n− 1)(n− 2)

n2 (M2
n − 1) + 2n− 1

n
(Mn − 1) + 2 − n

n2

]
, (26)

and

τn = hn
Mn

[
7n− 1

Mn − 4
]
. � (27)
n n
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Corollary 2. Assume that (4) holds. Then, for every x ≥ 0,

lim
n→∞

n

hn
B∗

n(ex1)(x) = x = lim
n→∞

n

hn
B∗

n(ex2)(x) (28)

and

lim
n→∞

n

hn
B∗

n(ex4)(x) = 0. (29)

Proof. It is sufficient to apply inequalities (20)-(22) and to observe that Mn → 1 (see (9)) and, thanks to 
(23)-(27), αn, βn, γn, σn, τn → 0 as n → ∞. �

We end these preliminaries with the following lemma.

Lemma 3. Under hypothesis (4), for every x ≥ 0 one has

lim
n→∞

n2

h2
n

B∗
n (ex4) (x) = 3x2.

Proof. If x = 0 the above formula is trivial thanks to (19) and the fact that rn(0) = 0 for every n ≥ 1.
Let x > 0 and assume that hn ≥ x (this is always true for n large enough). Taking (17) and (19) into 

account, we have

n2

h2
n

B∗
n(ex4)(x) =

(
n

hn
B∗

n(ex1)(x)
)2

(rn(x) − x)2 + hn

n
rn(x)

+ rn(x)
[
7n− 1

n
rn(x) − 4x

]
+ 6 n

hn
rn(x)

[
(n− 1)(n− 2)

n2 r2
n(x)

−2n− 1
n

xrn(x) + x2
]

+ n2

h2
n

r2
n(x)

[
−6n2 + 11n− 6

n3 r2
n(x) + 4x3n− 2

n2 rn(x) − x2 6
n

]

∼ 3x2 + 6rn(x)
[
(n− 1)(n− 2)

n2 (rn(x) + x) n

hn
B∗

n(ex1)(x) − 2n− 1
n

x
n

hn
B∗

n(ex1)(x)
]

+ r2
n(x)

[
n

hn

−6n2 + 11n− 6
n3 (rn(x) + x) n

hn
B∗

n(ex1)(x) + 4x n

hn

3n− 2
n2

n

hn
B∗

n(ex1)(x)
]

∼ 3x2 ,

by virtue of (4), (11), and (28). �
3. Voronovskaya type results

In this section, we are interested in determining Voronovskaya type results for the sequence (B∗
n)n≥1.

We begin with a pointwise asymptotic formula.

Theorem 4. Consider a function f ∈ C∗([0, +∞[) such that f ′′ exists at a point x ≥ 0. Then

lim
n→∞

n

hn
[B∗

n (f)(x) − f (x)] = x

(
f ′(x) + 1

2f
′′(x)

)
. (30)

Proof. If x = 0, (30) holds because of B∗
n(f)(0) = f(0). For x > 0 fixed, by virtue of Taylor’s expansion of 

f at the point x we get
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f (t) = f (x) + f ′ (x) (t− x) + f ′′ (x)
2 (t− x)2 + hx(t) (t− x)2 ,

where hx ∈ Cb([0, +∞[) (since f ∈ Cb([0, +∞[)) and hx(x) = 0.
Accordingly,

n

hn
(B∗

n(f)(x) − f(x)) = n

hn
f ′ (x)B∗

n(ex1)(x)

+ n

hn

f ′′ (x)
2 B∗

n(ex2)(x) + n

hn
B∗

n(hxe
x
2)(x) .

Therefore,

n

hn
[B∗

n(f)(x) − f (x)] − xf ′(x) − xf ′′ (x)
2

=
(

n

hn
B∗

n (ex1) (x) − x

)
f ′ (x) + 1

2

(
n

hn
B∗

n (ex2) (x) − x

)
f ′′ (x)

+ n

hn
B∗

n

(
he2

x

)
(x) = pn(x)f ′(x) + qn(x)f ′′(x) + n

hn
B∗

n (hex2) (x) ,

pn and qn being defined by

pn (x) := n

hn
B∗

n (ex1) (x) − x, (31)

qn (x) := n

2hn
B∗

n (ex2) (x) − x

2 . (32)

Then, taking (28) into account, pn (x) → 0, qn (x) → 0 as n → ∞, hence the statement is proven once we 
show that

lim
n→∞

n

hn
B∗

n(hxe
x
2)(x) = 0.

Set ε > 0 and Mx := supn≥1
n

hn
B∗

n(ex2)(x) < +∞ since (28) holds true; then there exists δ > 0 such that, 

if y > 0 is such that |x − y| < δ, then |hx(y)| ≤ ε

Mx
.

From this it follows that, for all y > 0,

|hx(y)ex2(y)| ≤ ε

Mx
ex2(y) + M

δ2 e
x
4(y),

where M := ‖hx‖∞.
Since (29) holds true, for sufficiently large n, we have that

n

hn
B∗

n(ex4)(x) ≤ δ2

M
ε.

Hence, for sufficiently large n,

n

hn
|B∗

n(hxe
x
2)(x)| ≤ n

hn
B∗

n(|hxe
x
2 |)(x)

≤ ε

Mx

n

hn
B∗

n(ex2)(x) + n

hn

M

δ2 B
∗
n(ex4)(x) ≤ 2ε,

and this completes the proof. �
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To determine the rate of pointwise convergence of the operators B∗
n and to present an upper bound for 

the error of pointwise approximation, we study, under some additional conditions, a quantitative asymptotic 
formula.

Theorem 5. Consider a function f ∈ C∗([0, +∞[), which is twice differentiable in [0, +∞[ with f ′′ ∈
C∗([0, +∞[). Then, for any x ∈ [0, +∞[,

∣∣∣∣ nhn
[B∗

n(f)(x) − f (x)] − xf ′(x) − xf ′′ (x)
2

∣∣∣∣ ≤ |pn (x)| |f ′ (x)|

+ |qn (x)| |f ′′ (x)| + 1
2 (2 |qn (x)| + x + 2sn (x))ω

(
f ′′;

√
hn/n

)
,

where, for every δ > 0, ω(f ′′, δ) denotes the usual modulus of continuity of f ′′, pn(x) and qn(x) are defined, 
respectively, by (31) and (32), and

sn (x) := n2

2h2
n

B∗
n(ex4)(x) . (33)

Proof. Arguing as in the proof of Theorem 4, for x ∈ [0, hn] we have

∣∣∣∣ nhn
[B∗

n (f, x) − f (x)] − xf ′(x) − xf ′′ (x)
2

∣∣∣∣
≤ |pn(x)||f ′(x)| + |qn(x)||f ′′(x)| + n

hn
|B∗

n (hxe
x
2) (x)| ,

where pn and qn are defined by (31) and (32), respectively. By using Taylor’s formula with Lagrange 
remainder, we can take

hx (t) := f ′′ (η) − f ′′ (x)
2

with η between x and t.
To complete the proof, we must estimate the last term n

hn

∣∣B∗
n

(
hxe

2
x

)
(x)

∣∣. Using the fact that, for every 
δ > 0,

|f ′′(η) − f ′′(t)| ≤
(

1 + (η − t)2

δ2

)
ω (f ′′; δ) ≤

(
1 + (x− t)2

δ2

)
ω (f ′′; δ) ,

we get

|hx (t)| ≤ 1
2

(
1 + ex2(t)

δ2

)
ω (f ′′; δ) (δ > 0).

Accordingly, by means of the Cauchy-Schwarz inequality,

n

hn
|B∗

n (hxe
x
2) (x)| ≤ n

hn
B∗

n (|hx| ex2) (x)

≤ n

2hn
B∗

n(ex2)(x)ω (f ′′; δ) + n

2δ2hn
B∗

n (ex4)(x)ω (f ′′; δ) .

Choosing δ =
√

hn and using (33), we obtain
n
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∣∣∣∣ nhn
[B∗

n(f)(x) − f (x)] − xf ′(x) − xf ′′ (x)
2

∣∣∣∣ ≤ |pn (x)| |f ′ (x)|

+ |qn (x)| |f ′′ (x)| + 1
2 (2 |qn (x)| + x + 2sn (x))ω

(
f ′′;

√
hn/n

)
,

which is desired for x ∈ [0, hn]. Note that, when x > hn, B∗
n(f)(x) = f(x) by definition and hence the claim 

is obvious, since pn(x) = −x, qn(x) = −x/2 and sn(x) = 0. �
Remark 1. Note that, according to Corollary 2 and Lemma 3, the sequences (pn(x))n≥1 and (qn(x))n≥1
vanish at infinity and (sn (x))n≥1 has a finite limit for all x ∈ [0, +∞[.

Now we proceed to establish a Voronovskaya type result with respect to the weighted norm ‖ · ‖m (see 
(2)).

Theorem 6. Let m ≥ 5. For every f ∈ C2([0, +∞[) ∩E∗
m such that f ′′ ∈ UCb([0, +∞[), we obtain

lim
n→∞

n

hn
(B∗

n(f) − f) = e1

(
f ′ + 1

2f
′′
)

with respect to ‖ · ‖m .

Proof. In order to get the statement we apply [6, Theorem 1]. In particular, we need to verify the following 
conditions:

(i) limn→∞ wm(x)xk
(

n
hn

B∗
n(ex1)(x) − x

)
= 0 (k = 0, 1),

(ii) limn→∞ wm(x) 
(

n
hn

B∗
n(ex2)(x) − x

)
= 0,

(iii) limn→∞ wm(x) n
hn

B∗
n(ex4)(x) = 0,

uniformly with respect to x ≥ 0. Moreover,

(iv) supx≥0,n≥1 wm(x) n
hn

B∗
n(ex2)(x) < +∞.

First of all, observe that all conditions are trivial for x = 0. For a fixed x > 0, let N such that x ≤ hn for 
every n ≥ N . Inequality (20) yields

wm(x)
∣∣∣∣ nhn

B∗
n(ex1)(x) − x

∣∣∣∣ ≤ x2

1 + xm
αn + x

1 + xm
βn ≤ αn + βn ,

and

wm(x)x
∣∣∣∣ nhn

B∗
n(ex1)(x) − x

∣∣∣∣ ≤ x3

1 + xm
αn + x2

1 + xm
βn ≤ αn + βn ,

so that condition (i) follows, as αn + βn → 0 as n → ∞ (see (23) and (24)).
Condition (ii) is a consequence of inequality (21). Indeed,

wm(x)
∣∣∣∣ nhn

B∗
n(ex2)(x) − x

∣∣∣∣ ≤ x3

1 + xm
αn(Mn − 1)

+ x2

1 + xm

(
(Mn − 1)(βn + 1) + M2

n

hn

)
+ x

1 + xm
(Mn − 1)

≤ αn(Mn − 1) +
(

(Mn − 1)(βn + 1) + M2
n

)
+ (Mn − 1) → 0
hn
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thanks to (9), αn, βn → 0, and hn → +∞ as n → ∞.
We pass now to show condition (iii). Taking (22) into account,

wm(x) n

hn
B∗

n(ex4)(x) x5

1 + xm
αn(Mn − 1)3

+ x4

1 + xm
γn + x3

1 + xm
σn + x2

1 + xm
τn + x

1 + xm

h2
n

n2 Mn

≤ αn(Mn − 1)3 + γn + σn + τn + h2
n

n2 Mn

and the last quantity tends to 0 as n → ∞ (see (25)-(27)). For the last condition we argue as follows. From 
(18),

n

hn
B∗

n(ex2)(x) ≤ n

hn
(M2

n − 1)x2 + Mnx .

Therefore,

wm(x) n

hn
B∗

n(ex2)(x) ≤ n

hn
(M2

n − 1) x2

1 + xm
+ Mn

x

1 + xm
≤ n

hn
(M2

n − 1) + Mn ,

the last sequence being convergent as n → ∞. Indeed, Mn → 1 and, on account of (8),

lim
n→∞

n

hn
(M2

n − 1) = 2 lim
n→∞

n

hn
(Mn − 1) = 2 lim

n→∞
2 − n/hn(1 − e−2hn/n)

1 − e−2hn/n

= 2 lim
n→∞

2 − n/hn(2hn/n− 2h2
n/n

2)
2hn/n

= 2 .

This completes the proof. �
4. Some consequences of the asymptotic formula

The asymptotic formula in Theorem 4 can be employed in order to get other properties of the operators 
B∗

n.
First, we show that, under suitable conditions, the operators B∗

n perform better than classical Bernstein-
Chlodowsky operators Bn,hn

in approximating certain functions.
To this end, we recall the asymptotic formula for the operators Bn,hn

(see [5]), i.e., for every f ∈
C∗([0, +∞[) such that f ′′ exists at a certain point x ≥ 0,

lim
n→∞

n

hn
(Bn,hn

(f)(x) − f(x)) = 1
2xf

′′(x).

By using the comparison theorem and the same methods in [12, Theorem 9]), we have the following result.

Proposition 7. Consider a function f ∈ C∗([0, +∞[) such that f ′′ exists at a certain point x ≥ 0. Moreover, 
assume that there exists n0 ∈ N such that, for every n ≥ n0,

f(x) ≤ B∗
n(f)(x) ≤ Bn,hn

(f)(x) . (34)

Then

−1
f ′′(x) ≤ f ′(x) ≤ 0. (35)
2
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In particular, if (34) holds true on [0, +∞[, f is decreasing and convex.
Conversely, assume that at a given point x0 ∈]0, +∞[, (35) holds with strict inequalities. Then there 

exists n0 ∈ N such that, for every n ≥ n0,

f(x0) < B∗
n(f)(x0) < Bn,hn

(f)(x0) .

Remark 2. We recall that the solutions to the differential equation

1
2f

′′(x) + f ′(x) = 0

belong to the linear space 〈e0, f2〉 generated by e0 and f2. The functions f satisfying (35) strictly for all 
x ∈ [0, +∞[ might be viewed as super-solutions of it.

Another consequence of the existence of an asymptotic formula is a localization form of the positivity.

Proposition 8. Consider h ∈ C∗([0, +∞[) and x ≥ 0. If h ≥ 0 on a neighborhood of Nx of x, then

B∗
n(h)(x) ≥ 0 + o

(
hn

n

)
.

Proof. Fix x1, x2 ∈ Nx with x1 < x < x2 and consider the function h̃ ∈ C∗([0, +∞[) defined as

h̃(t) =

⎧⎪⎨
⎪⎩

h(x1) 0 ≤ t < x1
h(t) x1 ≤ t ≤ x2
h(x2) x2 < t.

It is clear that h̃ ∈ C∗([0, +∞[) and it is positive on [0, +∞[. Besides, (h̃ − h)′′ exists on ]x1, x2[ and 
(h̃− h)′ = (h̃− h)′′ = 0 on ]x1, x2[. Finally, the asymptotic formula (30) yields

lim
n→∞

n

hn
B∗

n(h̃− h)(x) = 0

and, from the linearity and the positivity of the operators B∗
n, we get

0 ≤ B∗
n(h̃)(x) = B∗

n(h)(x) + o

(
hn

n

)
,

which is our claim. �
Other topics related to the asymptotic formula are saturation-type results, that we obtain as a special 

case of the ones in [14]. The next proposition is known as a pointwise saturation result and it is in some 
sense an inverse of the asymptotic formula (see [14, Lemma 3 and Theorem 1]).

Proposition 9. Let ]a, b[ be a bounded sub-interval of [0, +∞[ and consider f ∈ C∗([0, +∞[). Let ψ be a 
finitely-valued Lebesgue-integrable function on ]a, b[ such that, for each x ∈]a, b[,

lim inf
n→∞

n

hn
[B∗

n (f)(x) − f (x)] ≤ ψ(x) ≤ lim sup
n→∞

n

hn
[B∗

n (f)(x) − f (x)] .

Then f is twice differentiable a.e. on ]a, b[ and, a.e. on ]a, b[,

ψ = e1

(
f ′ + 1

f ′′
)
.
2
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In the next results, the trivial class and the saturation class for the operators B∗
n are characterized (see 

[14, Proposition 1 and Proposition 2]).

Proposition 10. Let ]a, b[ be a bounded sub-interval of [0, +∞[ and consider f ∈ C∗([0, +∞[). Then, for each 
x ∈]a, b[,

n

hn
(B∗

n(f)(x) − f(x)) = o(1)

if and only if f ∈ 〈e0, f2〉 in ]a, b[.

Proposition 11. Let ]a, b[ be a bounded sub-interval of [0, +∞[ and consider f ∈ C∗([0, +∞[). Moreover, fix 
M ≥ 0. Then, for each x ∈]a, b[,

n

hn
|B∗

n(f)(x) − f(x)| ≤ M + o(1)

if and only if
∣∣∣∣e1

(
f ′ + f ′′

2

)∣∣∣∣ ≤ Ma.e. in ]a, b[.
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