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1. Introduction

In order to approximate functions defined on unbounded intervals, in 1937 Chlodovsky introduced and
studied the following Bernstein-type operators

£ () () (-5)

for n > 1, x > 0, f belonging to a suitable space, and (h,)n,>1 being a sequence of strictly positive real
numbers such that lim,,_, hy, = 400 (see [13]; see also [17, pp. 36-37]). Observe that the B, j,,’s are not
positive operators, hence many authors worked with a positive modification of theirs, that for an abuse of
notation we continue to denote by B, p,, . Such operators are known as Bernstein-Chlodovsky operators and
they are defined by
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~ h,k n z \* z \" 7"
Inl = - = if0<a<
kz_:of< n ) (k) (hn) (1 hn) HO ST

f(x) if x > hy,

B, (F)(x) = (1)

(see, e.g., [8,9]). For more recent developments on Bernstein-Chlodovsky operators and their variants we
refer the interested readers to, e.g., [2,15,16]. In particular, Voronovskaya theorems for Bernstein-Chlodovsky
operators and their generalizations have been deeply studied (see, for example, [1,5,9-11]).

Note that the operators B, 5, fix constant and linear functions. Motivated by the increasing interest in
operators which preserve different functions in order to get better properties (for a survey on these topics
see, e.g., [3]), in [4] we introduced a particular modification B} of the operators (1) that allows to reproduce
constants and the exponential function fo, where fo(x) = e=2¢ (z > 0).

Approximation properties of the sequence (B),>1, both in spaces of continuous functions and in some
weighted function spaces, can be found in [4], where we generally focused on uniform convergence behaviors.
However, pointwise convergence has as a crucial role as uniform one. This fact directed us to describe
pointwise approximation properties of the sequence (B;),,>1 in terms of pointwise Voronovskaya type results.
We also obtain an asymptotic formula with respect to a weighted norm.

More precisely, we prove that the operators B} are involved in an asymptotic formula with respect to
a certain second-order degenerate differential operator. It can be shown, by using some results in [7], that
this differential operator is the generator of a positive Cip-semigroup in certain weighted spaces. It might
be interesting to investigate the eventuality that such a semigroup can be represented in terms of iterates
of the operators B}, as an application of the classical Trotter representation theorem (see [8, Proposition
1.6.7)).

In the paper, as a consequence of the asymptotic formula, we also deduce several properties of the
operators B ; in particular, by comparing the relevant asymptotic formulas, we prove that the B}:’s perform
better than the operators B, j,, in approximating certain decreasing convex functions. Moreover, we obtain
some saturation results, in the same spirit of [14].

The paper is organized as follows: after a section collecting the basic preliminaries, we proceed, in Section
3, to present some Voronovskaya type theorems for the operators B}i. The paper ends with a section devoted
to several applications of the results contained in Section 3.

2. Preliminaries
Throughout the paper, C([0, +o00[) stands for the space of all continuous real valued functions on [0, +o0]
and Cy([0, 400[) for the space consisting of all functions in C(]0, +oco[) which are also bounded. Cj ([0, +00])
is a Banach lattice if endowed with the sup-norm || - | and the natural pointwise ordering. Moreover, we
shall denote by C.([0,4o00[) the Banach sublattice of Cy([0, +00[) defined as
Cu([0, +o0]) = { € C([0, +0o] : 3 lim_f(x) €}

The symbol UC4([0, 4+o00[) indicates the space of all uniformly continuous functions on [0, 4+00[ that are
also bounded.
Further, for every m > 1, we define the weighted space

By = {f € C(0.420]) : supu(x)| ()] € R),

endowed with the norm
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[fllm := supwm ()| f ()] (f € Em),
x>0

where

We also need its natural subspace

E, ={f€E,: Elmgrlloowm(x)f(x) € R}.

In [4] we introduced the modified Bernstein-Chlodovsky operators B defined as follows: for every n > 1,

f € Cy(]0,+00[) and = > 0,

B (kY () [ 1—e @/ " I e i n—k
250 ) ) e ) U T
Ba(f)(z) = if 0 <a<hy,

f(z) itx > hy.

The B;:’s preserve constants and B} (f2) = fa, where fo(z) = e72* (z > 0). Further, for every n > 1, B}

is a positive linear operator from C.([0, +o0[) into itself and || B ||c, (0,400 = 1-
Moreover, under the assumption

hy
lim — =0,
n—oo n

if f € C.([0,400]), then 1i_>m B! (f) = f uniformly on [0, +oo].
n—oo
For sufficiently large n, B} (E),) C B}, and, if f € Ef  then lim B (f) = f with respect to || - ||m-
n—oo
We point out that, if f € C.([0,+oc[) and 0 < z < A,

B (f)(2) = (B, (f) o) (2)
for every n > 1, where

1— e—(2x)/n

Tn(x): nm fOrOSxShn

It can be useful to recall some properties of (r,,)n>1. First,
rn(0) =0,7r,(hy) = hp, and 0 < r,(2) < M,x for every z > 0,

where

2h,
Mn = ngh/n fOI' every n Z 1.

Note that M,, > 1 and, under the assumption (4),

lim M, =1.

n—oo

n
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Moreover, for every n > 1,

rn(x) > for any 0 <z < hy, (10)
and, under hypothesis (4),
nl;rr;o Tn = €1 (11)

pointwise on [0, +oo[, and uniformly on compact sub-intervals of [0, +o0].
Coming back to the operators B}, we now compute them in the functions ey, where for a given z > 0
and i € N,

ert) = (t—a)l (t>0).

0

i

In particular, we briefly write e; for the power functions e
Combining (5) with [11, Lemma 2.1], we get the following formulas: for every n > 1,

Bl (eg) = eq (12)

and, for 0 < z < hy,,
Bi(er)() = ra(a) 13)
Bi(ea)(w) = "2 (@) + "), (14)
Bifea)@) = O gy gnn Ly By ), (15)

and

(n= D =2)(n=3) ,

h2n—1 4 h3
+ 7? - ro(x) + Frn(x)
Using (12)-(14) it is easy to see that, for any n > 1 and z € [0, h,],
B(er)(x) = rn(z) — 2 (17)
and
el w 1 hn,
Br(e3)(@) = (ra(w) —2)* = —ri (@) + —=ra(@). (18)
Moreover, from (12)-(16) it follows that, for any n > 1 and x € [0, hy,],
h3 h? n—1
* (T _ 4 n n
BHED)(@) = () = )"+ (o) + Tare) 1 (o) —
—1)(n—-2 -1
+ 6@7”“(1‘) {u(zn)ri(ac) _9 axry(z) + xz] (19)
n n
—6n? +11n — 6 3n —2 6
2 2 2
+ () [n?’rn(:c) +4x 3 ro(z) — n] :

Finally note that, from definition (3), it follows that B (e?)(z) =0 for ¢ > 1 and = > h,,.
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Lemma 1. For z > 0 and n sufficiently large,

B (ef)(x) — @] < a2 + b, (20)
N oo/ x 3 2 MTQL
h_Bn(€2)(x)_$ <2tan (M, — 1)+ (va_l)(ﬂn+1)+h— +x (M, 1), (21)
and
; . h2
hiB;:(eZ)(x) < J:E’an(Mn —1)%+ iy, + 230, + 221, + xn—gMn , (22)

where (an)n>1, (Bn)n>1s (Yn)n>1, (0n)n>1, (Tn)n>1 are suitable sequences of real numbers.

Proof. First note that for x = 0 the above formulas are easily verified thanks to (17)-(19), and the fact that
r,(0) = 0 for every n > 1.

Now fix z > 0; since h,, — +00 as n — 00, for n large enough we have that h, > z. Keeping (6) and
(17) in mind, we may write

n n [1—e22/™  2h,/n h.,

_B* x _ — o - _In

. Bale)(@) — o =27 { Sen  1— e 2hin " }

_p (e 2/ 2haf/n e

B zhn 2z/n 1—e2hn/n " 1 — e—2hn/n n |-

As a consequence,

EB*(GQC)(SL’)—.’L’ <$2£ th/n —‘r.’L‘ﬁ 2hn/n _ _h
hn n\“1 — hn 1— e*th/’ﬂ hn 1— 672h"/" n 3

where we have used the inequality ‘ 1_e=2%/n

R Ty 1‘ < C% which holds for n large enough, where C' does not

depend on x and n.
Setting, for every n > 1,

C  2h,/n
ay = h_n—l — e—th/?’L (23)
and
n 2h,/n — (1 — e 2mn/m) — h, n(1 — e=2hn/n
5 2hu/n = ) — ha ) o)

I 1 — e=2hn/n
(note that 8, > 0) we get (20).

In order to achieve estimate (21), we observe that, thanks to (17) and (18),

L Bies)(w) — v = (%B:;(e@(x) - x) (ra(a) =)+ a(ra(z) = ) = 7-72(0) + (rala) — 2).

Then, keeping (7)-(10) and (20) in mind,
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=B (@)~
< [T BieD)(@) — 2] (ra(@) — ) + 2lra(e) — ) + 3-r2(2) + (rale) —2)

n n

M2
< (2P + 22B,) (M, — 1) + 22 <Mn -1+ h—”) +z(M, —1).

n

Finally, by means of (17), (19) and (20), we get

e = (

n

PBLD@) ~ 2 ) (rale) ~ 2+ 200(0) - 0

h2 P n—1
+ Frn(x) + Wrn(x) {7 - ro(x) — 43:}
-1 -2 -1
+ 67y, () {—(n )(2n )TTZL(ZL‘) _9 axry(z) + mz]
n
N g —6n?+11n—6 , 3n —2 26
+ hnrn(z) {—ni)’ ri(x) + 4z 3 ro(x) —x -

< (2P + 26,) (M, — 1)323 + 2 (M,, — 1)3

h2 ha -1
+ 28 Mz 4 2 M, [7" M, — 4]
n n

(n—1)(n—-2)

5 (r(z) — 2%) — 2

n

+ 6M,,x [
n

—6n%+11n—6, ,

a (ri(z) —x2)—|—41:3 3 (rp(z) —z)+x

hn
< (x504n + x45n)(Mn — 1)3 + x4(Mn — 1)3

+

M2 a?
n ng

h?2 hn -1
+ 28 Mz + M, [7” M, — 4]
n n n
(n—1)(n—2)
2

+ 6M,,23 [

(M2 —1) + 22 ”]

M, —1
n ( )+ n?

+ (M2 —1)+4

M2z* <6n2 +11n—6

3n—2 3n—6
I

n2 (My 1) + =
h2

= x5an(Mn — 1)3 + 2ty + 230, + 227 + x—gMn ,

n

where, for every n > 1,

Tn = (ﬁn + 1)(Mn - 1)3

M2 [—6n%+11n—6
n<T(Mg_1)+4 A

n_l(Mn_1)+2_n:|a

n n

+h,—n

3n — 2 3n — 6) (25)

S {(n— 1)(n—2)

M2 -1)+2
. (My —1)+

and

hy,

n

n—1

= A [7 M, —4|. O (27)
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Corollary 2. Assume that (4) holds. Then, for every x > 0,

. n *x( T : n *x( T
Jim h—an(el)(w) =a= lim EBn(ez)(x) (28)
and
n
lim — B (ef)(x) = 0. (29)

n—oco h,

Proof. Tt is sufficient to apply inequalities (20)-(22) and to observe that M,, — 1 (see (9)) and, thanks to
(23)'(27)7 anvﬁnv’Y’nuO—n,Tn —0asn—o00. O

We end these preliminaries with the following lemma.
Lemma 3. Under hypothesis (4), for every x > 0 one has

N 2
nh_>ngo EBn (64)(1’) = 3x”.

Proof. If 2 = 0 the above formula is trivial thanks to (19) and the fact that r,(0) = 0 for every n > 1.

Let > 0 and assume that h,, > x (this is always true for n large enough). Taking (17) and (19) into
account, we have

B = (@) (alo) -0 + (0

n

Y ro() [7” Lra(e) - 44 + 650 () [(”—171#7«3(3;)

o @)+ x2] + %r;i( ) {—_6”2 2w + a2 ) - xﬂ
~ 322 + 61y (2) [W(rn(:ﬂ) + o)1 B (e @) — 27 13;%33;(6{)(@]
#r20) [0 o) ) B e o) + o P e )

by virtue of (4), (11), and (28). O
3. Voronovskaya type results

In this section, we are interested in determining Voronovskaya type results for the sequence (B})n>1.
We begin with a pointwise asymptotic formula.

Theorem 4. Consider o function f € C.([0,+00[) such that f" exists at a point x > 0. Then

i 15 (o)~ £ @] = (£/) + 57(0) ) (30)

n—oo

Proof. If x = 0, (30) holds because of B;:(f)(0) = f(0). For x > 0 fixed, by virtue of Taylor’s expansion of
f at the point = we get
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FO) = F @)+ f @) -2+ D

5 (t = 2)2 4 ho(t) (t — 3)?,

where h, € Cy([0, +00]) (since f € Cp(]0,+00[)) and hy(xz) =0
Accordingly,

o (Bi)@) = f)

:—nf’ () B} (ef) (@)
n f” (JJ) %/ T n * x
+ h/_n 5 B (e5)(x) + h_an(hze2)(x) .

Therefore,

L [BuUH@) - 1 @) - of () - 2L

2
(EBien@—) @+ 3 (1B D @) -2 ) 5" @)
B (he2) (@) = pu(@)f' (@) + 4o ()" (@) + 3B (hef) (2)
pn and g, being defined by

_|_

pn () = %B:; (e}) (z) — =, (31)
0 (x) = 53 B (e5) (1) — 5.

(32)

Then, taking (28) into account, p, (x) — 0, ¢, () — 0 as n — oo, hence the statement is proven once we
show that

. n * xT _
Jim. h—an(hwez)(@ =0.

Set ¢ > 0 and M, := sup,,»; hﬁB;;(eg)(x) < 00 since (28) holds true; then there exists § > 0 such that,
n
if y > 0 is such that |z — y| < §, then |h,(y)| < Mi
From this it follows that, for all y > 0, ’

ha0)e5 )| < - e50) + 55¢50)

where M := ||hz]|co-

Since (29) holds true, for sufficiently large n, we have that

N . 52
HBn(e4)(x) < 7€

Hence, for sufficiently large n,

n * x n * T
—|By(hee3)(z)| < =B, (|haes])(x)
hn hn

e n _, n M _,
< EHBn(eg)(x) + h 6% n(eq)(@) < 2,
and this completes the proof. O
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To determine the rate of pointwise convergence of the operators B} and to present an upper bound for
the error of pointwise approximation, we study, under some additional conditions, a quantitative asymptotic
formula.

Theorem 5. Consider a function f € C.([0,+o0[), which is twice differentiable in [0, +oo| with f" €
C.([0,+00]). Then, for any = € [0, 00|,

[BL(f)(x) = f (2)] — af (x) — w

< pu @) 1f' (1)
lan @IS @]+ 5 @lan @]+ 2+ 250 () (£ /)

where, for every 6 > 0, w(f",d) denotes the usual modulus of continuity of f, pn(z) and ¢,(x) are defined,
respectively, by (31) and (32), and

sn (z) := o7 By (ef)(2) . (33)
Proof. Arguing as in the proof of Theorem 4, for x € [0, h,,] we have

n

by,
< pa(@)I1f'(@)] + lan (@)1 /" (2)] + hﬁn By, (hze3) ()],

where p,, and ¢, are defined by (31) and (32), respectively. By using Taylor’s formula with Lagrange
remainder, we can take

_ ST = 1 (=)

ha (t) : 5

with 1 between z and t.
To complete the proof, we must estimate the last term ;- |B;§ (hxei) (z)| Using the fact that, for every
6 >0,

—+)2 T — )2
= ror< (10 PG e o < (10 B oo,

we get

he (0] < (1 + ei@) w(f'58) (3> 0).

Accordingly, by means of the Cauchy-Schwarz inequality,

n * x n * x
T |B (hat$) (@)] < 2 By (1hal €5) (@)
n

< 5 Br(e3) @) (736) + 5o

< 5 B (e5)(@)w (/59).

Choosing § = \/h# and using (33), we obtain
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O <y, @)1 @)

,f—n [Bi(f)(@) - f (2)] —af'(z) - L2

Flan @IS @]+ 5 @lan @]+ 2+ 250 (@) (£ V)

which is desired for z € [0, h,,]. Note that, when « > h,,, B(f)(z) = f(z) by definition and hence the claim
is obvious, since py,(z) = —z, ¢,(x) = —x/2 and s,(z) =0. O

Remark 1. Note that, according to Corollary 2 and Lemma 3, the sequences (p,(z))n>1 and (gn(z))n>1
vanish at infinity and (s, (2)),,>, has a finite limit for all z € [0, +ool.

Now we proceed to establish a Voronovskaya type result with respect to the weighted norm || - ||, (see

(2))-
Theorem 6. Let m > 5. For every f € C?([0,+o00]) N E}, such that f” € UCy([0,+oo]), we obtain

lim - (Bi(f)—f)=e1 (f' + %f”) with respect to || - ||m -

n—oo h,

Proof. In order to get the statement we apply [6, Theorem 1]. In particular, we need to verify the following
conditions:

=)
3

1

8
g
3
—
=
8

B
/N
Tk
Sy
3 %
D
=8

uniformly with respect to z > 0. Moreover,

(iv) SUP,>0,n>1 Wm ()75 By (€3)(x) < +o0.

First of all, observe that all conditions are trivial for x = 0. For a fixed > 0, let N such that z < h,, for
every n > N. Inequality (20) yields

2

n €T

and
(@) n “(e) () < x3 x? <
W () |— B, (e7)(z) — x| < o + B < oy + B,
hn ! 1+azm 14 am

so that condition (i) follows, as a, + 8, — 0 as n — oo (see (23) and (24)).
Condition (ii) is a consequence of inequality (21). Indeed,

n T
—B* (€5 —x| < M, —1
wm(m) hn n(62)(‘r) T > 1+xman< n )
4 (M, —1)(8 +1)+M5 (M, 1)
1+ xm " " hn, 1+ xm "

< an(M, —1)+ ((Mn—l)(ﬂn+1)+]\h4—5) + (M, —1) =0

n
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thanks to (9), an, Bn — 0, and h,, — +00 as n — oo.
We pass now to show condition (iii). Taking (22) into account,

5

n * [ T € 3
W (@)1 B ) (@) s (Mo = 1)
L rt n x3 L x? L_" h2
n On Tn NG) n
Ttam " 1gam ™ T Txam " T4 amn?

h2
< an(Mn - 1)3 + Y+ On+ Tn + ’I’L_ZMTL

and the last quantity tends to 0 as n — oo (see (25)-(27)). For the last condition we argue as follows. From
(18),

B (e2)(2) < hﬁ(M;f —1)a? + Mz

Therefore,

win(2) 5~ Bi(€5) (@) < 7 (M7 — 1) + M, <

n
—(M?—-1)+ M,,,
ha, n( 0 1+ am 1+am hn( " )+

the last sequence being convergent as n — oo. Indeed, M,, — 1 and, on account of (8),

2 —n/hy(1 — e 2/
lim —~(M2 —1) =2 lim hﬁ(an):z lim 2=/l —e )

n—oo h,, n—oo h, n— o0 1 — e—2hn/n

_ _9p2 /n2
— 9 lim 2 —n/h,(2h,/n — 2hZ /n?)

=2.
n—00 th/n

This completes the proof. 0O
4. Some consequences of the asymptotic formula

The asymptotic formula in Theorem 4 can be employed in order to get other properties of the operators
B;.

First, we show that, under suitable conditions, the operators B} perform better than classical Bernstein-
Chlodowsky operators B,, p, in approximating certain functions.

To this end, we recall the asymptotic formula for the operators B, ;, (see [5]), i.e., for every f €
C.(]0, +0o0]) such that f” exists at a certain point = > 0,

n—oo n

. n 1
tim 7 (B, (F)(&) — (&) = 52" (x).
By using the comparison theorem and the same methods in [12, Theorem 9]), we have the following result.

Proposition 7. Consider a function f € Ci([0,4+00[) such that f" exists at a certain point © > 0. Moreover,
assume that there exists ng € N such that, for every n > ng,

f(x) < B (f)(x) < B, (f)(z). (34)

Then

5@ < @) <0, (35)
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In particular, if (34) holds true on [0,+o0[, f is decreasing and conver.
Conversely, assume that at a given point xq €]0,4o00[, (35) holds with strict inequalities. Then there
exists ng € N such that, for every n > no,

f(@o) < B (f)(w0) < Bn,n, (f)(x0)-

Remark 2. We recall that the solutions to the differential equation

1 17 ! _
3/ (@) + f(z) =0

belong to the linear space (e, f2) generated by ey and fo. The functions f satisfying (35) strictly for all
x € [0, 4o00[ might be viewed as super-solutions of it.

Another consequence of the existence of an asymptotic formula is a localization form of the positivity.

Proposition 8. Consider h € C.([0,+o0[) and > 0. If h > 0 on a neighborhood of N, of x, then

B:(h)(z) >0+o0 (h—") .

n
Proof. Fix x1,22 € N, with 1 < & < x5 and consider the function he C.([0,4o0]) defined as

h(l‘l) 0<t< T
h(t) =< h(t) 1 <t < a9
h(l’z) T9 < T.

It is clear that h € C,([0,+00[) and it is positive on [0,+oc[. Besides, (h — h)” exists on |z, z2] and
(h—h) = (h—h)" =0 on |z, z3[. Finally, the asymptotic formula (30) yields

lim —B*(h— h)(z) =0

n—oo A,

and, from the linearity and the positivity of the operators B, we get

~ hn
0 < By 0) = ) +o (5.
which is our claim. O

Other topics related to the asymptotic formula are saturation-type results, that we obtain as a special
case of the ones in [14]. The next proposition is known as a pointwise saturation result and it is in some
sense an inverse of the asymptotic formula (see [14, Lemma 3 and Theorem 1]).

Proposition 9. Let |a,b] be a bounded sub-interval of [0,+oo] and consider f € C.(]0,+o0[). Let ¢ be a
finitely-valued Lebesgue-integrable function on la,b| such that, for each x €]a,b],

liminf = [B; (/)(2) — f (2)] < ¥() < limsup-= [B} (f)(2) - f (2)].

n—0oo [l n—oo In

Then f is twice differentiable a.e. on ]a,b] and, a.e. on ]a,b],

vea £z,
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In the next results, the trivial class and the saturation class for the operators B} are characterized (see
[14, Proposition 1 and Proposition 2]).

Proposition 10. Let |a, b[ be a bounded sub-interval of [0, +oo[ and consider f € C.([0,+o0]). Then, for each
x €la,bl,

,f—n (B(f)(@) — f(2)) = o(1)

if and only if f € (e, f2) in ]a,b[.

Proposition 11. Let Ja, b be a bounded sub-interval of [0, +o0o[ and consider f € C.([0,4+o0[). Moreover, fix
M > 0. Then, for each x €la,b|,

% |BL(f)(x) — f(2)| < M +0(1)

if and only if

11
e1 (f’ + 7)’ < Ma.e. in ]a,bl.
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