This study aimed to evaluate the efficiency of plant growth-promoting rhizobacteria (PGPRs), isolated from the rhizosphere of halophile plants, for the growth, Na+/K+ balance, ethylene emission, and gene expression of wheat seedlings (Triticum aestivum L.) grown under saline conditions (100 mmol L-1 NaCl) for 14 d. A total of 118 isolates obtained from saline soils of the deserts of Iran were tested for their capacity as PGPRs. Out of the 118 isolates, 17 could solubilize phosphate (Ca3(PO4)2), 5 could produce siderophores, and 16 could synthesize indole-3-acetic acid. Additionally, PGPRs were also evaluated for aminocyclopropane-1-carboxylate deaminase activity. A pot experiment was conducted to evaluate the ability of 28 PGPR isolates to promote growth, regulate Na+/K+ balance, and decrease ethylene emissions in plants. The most efficient PGPRs were Arthrobacter aurescens, Bacillus atrophaeus, Enterobacter asburiae, and Pseudomonas fluorescens. Gene expression analysis revealed the up-regulation of H+-PPase, HKT1, NHX7, CAT, and APX expression in roots of Enterobacter-inoculated salt-stressed plants. Salt-tolerant rhizobacteria exhibiting plant growth-promoting traits can facilitate the growth of wheat plants under saline conditions. Our results indicate that the isolation of these bacteria may be useful for formulating new inoculants to improve wheat cropping systems in saline soils.

Halophile plant growth-promoting rhizobacteria induce salt tolerance traits in wheat (Triticum aestivum L.)

Sofo A
2020-01-01

Abstract

This study aimed to evaluate the efficiency of plant growth-promoting rhizobacteria (PGPRs), isolated from the rhizosphere of halophile plants, for the growth, Na+/K+ balance, ethylene emission, and gene expression of wheat seedlings (Triticum aestivum L.) grown under saline conditions (100 mmol L-1 NaCl) for 14 d. A total of 118 isolates obtained from saline soils of the deserts of Iran were tested for their capacity as PGPRs. Out of the 118 isolates, 17 could solubilize phosphate (Ca3(PO4)2), 5 could produce siderophores, and 16 could synthesize indole-3-acetic acid. Additionally, PGPRs were also evaluated for aminocyclopropane-1-carboxylate deaminase activity. A pot experiment was conducted to evaluate the ability of 28 PGPR isolates to promote growth, regulate Na+/K+ balance, and decrease ethylene emissions in plants. The most efficient PGPRs were Arthrobacter aurescens, Bacillus atrophaeus, Enterobacter asburiae, and Pseudomonas fluorescens. Gene expression analysis revealed the up-regulation of H+-PPase, HKT1, NHX7, CAT, and APX expression in roots of Enterobacter-inoculated salt-stressed plants. Salt-tolerant rhizobacteria exhibiting plant growth-promoting traits can facilitate the growth of wheat plants under saline conditions. Our results indicate that the isolation of these bacteria may be useful for formulating new inoculants to improve wheat cropping systems in saline soils.
2020
File in questo prodotto:
File Dimensione Formato  
2020 - Safdarian et al - PED.pdf

accesso aperto

Descrizione: Lavoro
Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/142275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 11
social impact