This study aimed to determine the ability of the fungus Trichoderma harzianum strain T22 (Th-T22) to utilize diesel fuel as a carbon source. The potential use of Th-T22 for diesel bioremediation in an artificial soil was tested by inoculating a diesel-sand mixture with a fungal mycelial suspension of Th-T22. Given the ability of ozone to degrade compounds with low biochemical reactivity, the effect of a pre- and post-ozonation was also evaluated. The survival, growth and sporulation of Th-T22 throughout the bioremediation trial were monitored in all the treatments. In the post-ozonation treatments, the biodegradation percentages of diesel removal were 70.16% and 88.35% in Th-T22-inoculated sand treated or untreated with the antibacterial streptomycin, respectively. The results showed that ozonation alone caused good removal efficiencies (41.9%) but it was much more effective if combined with Th-T22 in a post-ozonation regime, whereas pre-ozonation negatively affected the subsequent biodegradation, likely due to its disinfectant and oxidizing effect on Th-T22. The results obtained demonstrated the significant mycoremediation ability of Th-T22 in diesel-contaminated sand and its possible use as a bioremediation agent for diesel spills in polluted sites.

Mycoremediation effect of Trichoderma harzianum strain T22 combined with ozonation in diesel-contaminated sand

Elshafie H. S.;Camele I.;Sofo A.;Mazzone G.;Caivano M.;Masi S.;Caniani D.
2020-01-01

Abstract

This study aimed to determine the ability of the fungus Trichoderma harzianum strain T22 (Th-T22) to utilize diesel fuel as a carbon source. The potential use of Th-T22 for diesel bioremediation in an artificial soil was tested by inoculating a diesel-sand mixture with a fungal mycelial suspension of Th-T22. Given the ability of ozone to degrade compounds with low biochemical reactivity, the effect of a pre- and post-ozonation was also evaluated. The survival, growth and sporulation of Th-T22 throughout the bioremediation trial were monitored in all the treatments. In the post-ozonation treatments, the biodegradation percentages of diesel removal were 70.16% and 88.35% in Th-T22-inoculated sand treated or untreated with the antibacterial streptomycin, respectively. The results showed that ozonation alone caused good removal efficiencies (41.9%) but it was much more effective if combined with Th-T22 in a post-ozonation regime, whereas pre-ozonation negatively affected the subsequent biodegradation, likely due to its disinfectant and oxidizing effect on Th-T22. The results obtained demonstrated the significant mycoremediation ability of Th-T22 in diesel-contaminated sand and its possible use as a bioremediation agent for diesel spills in polluted sites.
2020
File in questo prodotto:
File Dimensione Formato  
DIESEL_CHEMOSPERE.pdf

solo utenti autorizzati

Descrizione: DIESEL_CHEMOSPERE
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 910.4 kB
Formato Adobe PDF
910.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/142036
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 22
social impact