The observational covariance matrix, whose diagonal square root is currently named radiometric noise, is one of the most important elements to characterize a given instrument. It determines the precision of measurements and their possible spectral inter-correlation. The characterization of this matrix is currently performed with blackbody targets of known temperature and is, therefore, an output of the calibration unit of the instrument system. We developed a methodology that can estimate the observational covariance matrix directly from calibrated Earth-scene observations. The technique can complement the usual analysis based on onboard blackbody calibration and is, therefore, a useful back up to check the overall quality of the calibration unit. The methodology was exemplified by application to three satellite Fourier transform spectrometers: IASI (Infrared Atmospheric Sounder Interferometer), CrIS (Cross-Track Infrared Sounder), and HIRAS (Hyperspectral Infrared Atmospheric Sounder). It was shown that these three instruments are working as expected based on the pre-flight and in-flight characterization of the radiometric noise. However, for all instruments, the analysis of the covariance matrix reveals extra correlation among channels, especially in the short wave spectral regions.

Characterization of the Observational Covariance Matrix of Hyper-Spectral Infrared Satellite Sensors Directly from Measured Earth Views

Serio, Carmine;Masiello, Guido
;
Mastro, Pietro;
2020-01-01

Abstract

The observational covariance matrix, whose diagonal square root is currently named radiometric noise, is one of the most important elements to characterize a given instrument. It determines the precision of measurements and their possible spectral inter-correlation. The characterization of this matrix is currently performed with blackbody targets of known temperature and is, therefore, an output of the calibration unit of the instrument system. We developed a methodology that can estimate the observational covariance matrix directly from calibrated Earth-scene observations. The technique can complement the usual analysis based on onboard blackbody calibration and is, therefore, a useful back up to check the overall quality of the calibration unit. The methodology was exemplified by application to three satellite Fourier transform spectrometers: IASI (Infrared Atmospheric Sounder Interferometer), CrIS (Cross-Track Infrared Sounder), and HIRAS (Hyperspectral Infrared Atmospheric Sounder). It was shown that these three instruments are working as expected based on the pre-flight and in-flight characterization of the radiometric noise. However, for all instruments, the analysis of the covariance matrix reveals extra correlation among channels, especially in the short wave spectral regions.
2020
File in questo prodotto:
File Dimensione Formato  
2020_Sens_Serio.pdf

accesso aperto

Descrizione: PDF editoriale
Tipologia: Pdf editoriale
Licenza: Creative commons
Dimensione 3.4 MB
Formato Adobe PDF
3.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/141539
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact