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Abstract: The observational covariance matrix, whose diagonal square root is currently named
radiometric noise, is one of the most important elements to characterize a given instrument. It determines
the precision of measurements and their possible spectral inter-correlation. The characterization of this
matrix is currently performed with blackbody targets of known temperature and is, therefore, an output
of the calibration unit of the instrument system. We developed a methodology that can estimate the
observational covariance matrix directly from calibrated Earth-scene observations. The technique can
complement the usual analysis based on onboard blackbody calibration and is, therefore, a useful
back up to check the overall quality of the calibration unit. The methodology was exemplified by
application to three satellite Fourier transform spectrometers: IASI (Infrared Atmospheric Sounder
Interferometer), CrIS (Cross-Track Infrared Sounder), and HIRAS (Hyperspectral Infrared Atmospheric
Sounder). It was shown that these three instruments are working as expected based on the pre-flight
and in-flight characterization of the radiometric noise. However, for all instruments, the analysis of the
covariance matrix reveals extra correlation among channels, especially in the short wave spectral regions.

Keywords: instrument radiometric characterization; radiometric noise; hyper-spectral sounders;
infrared; satellite

1. Introduction

The characterization of the radiometric noise, or more in general the observational covariance
matrix, of remote sensing instrumentation is an important step to fully exploit the related observations
for the estimation of geophysical parameters. The observational covariance matrix, Sε, is an ingredient
of the so-called Level 1 (L1) data. For infrared sensors, such as those we deal with in this paper,
L1 data correspond to the calibrated spectral radiance. The diagonal of Sε corresponds to the variances
of the observations and their square root is what is normally referred to as the radiometric noise.
This expresses the precision of measurements because of instrument noise. The off-diagonal terms
of Sε (normally termed as covariances) give the inter-correlation among observations. Generally,
off-diagonal terms are negligible; however, non-zero covariances can arise because of post-elaboration
of L1 data, such as mathematical apodization (e.g., see [1]), but they can also reflect unexpected noise
sources, such as mechanical micro-vibrations, thermal effects and so on [2–4].

The radiometric noise of a given instrument is normally assessed through the calibration unit with
the instrument looking at blackbody targets of known temperature. By accumulating many blackbody
observations, one obtains an ensemble of spectra from which Sε is calculated considering ensemble
variances and covariances. However, once in orbit, a given instrument is looking at Earth-scene views,
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which do not have temperature such as that of the blackbody source. In addition, radiation is absorbed
by the atmosphere in a way which depends on the wave-number. The integrated radiation at the
top-of-atmosphere can be thought of emission from a continuum range of temperature. Therefore, it is
desirable to check if there are noise-dependencies on the Earth views.

Towards this objective, we devised a methodology that directly uses the spectral radiance
observed from the instrument. In practice, the technique computes the spectral residual Observations-
Calculation (O-C) from a set of observed spectra, and, as in the case of blackbody spectra, Sε is
calculated considering ensemble variances and covariances of the spectral residuals. In principle,
the Calculation can be obtained in many ways. One obvious way is to use a forward model (e.g., [5])
with the atmospheric state vector obtained through a fitting procedure (e.g., [6]). This approach was
used by Serio et al. [3], but it has the potential disadvantage of relying on a forward model, which could
introduce a new source of errors, e.g., extra bias and/or variability.

Another approach consists in first projecting the data into an orthogonal basis; back-projecting
the data to the physical space through a suitable truncated expansion, which can be thought of as
a reconstruction or representation of the signal or S; and, finally, obtaining the spectral residual
according to O-S, where now S plays the role of Calculation. The orthogonal basis could be the usual
Fourier transform or, as an alternative, the Principal Component Analysis (PCA) [7]. Both techniques
have been extensively used for dimensionality reduction of data (e.g., [8–15]), whereas the use of PCA
to assess the noise performance of infrared instrument has been used for the American CrIS (e.g.,
see [2]), although in that study the tool was applied mostly to blackbody spectra. These, depending on
a single temperature parameter, can be fitted with zero or at most one PC score. In [2], the concept
of instrument noise as the additive composition of a correlated term and a truly random part was
also introduced. They also suggest that using PCA, one can estimate the truly random component
alone. This approach was also followed by Lee et al. (2019) [16] who analyzed Hyperspectral Infrared
Atmospheric Sounder (HIRAS) data. However, we think that this additive model is useless and does
not yield a correct representation of the instrument noise, which can show spectral correlation because
of pre- and post-processing of calibrated radiances. As an example, IASI (Infrared Atmospheric
Sounder Interferometer) is Gaussian apodized (e.g., see [1]), therefore the instrument noise affecting
IASI spectral radiances is spectrally correlated. Quite recently, Han et al. (2015) [17] showed that the
self-apodization corrections of CrIS (Cross track Infrared Sounder) spectral radiance can correlate the
instrument noise.

This paper aims at showing that, once properly applied, the PCA approach can estimate the
total instrument noise with its spectral correlation, if any, and therefore there is no need to introduce
an additive noise model.

The application of PCA to direct observations of the Earth emission is complicated because the
Earth–atmosphere system introduces a signal in the spectral radiance, which needs more PC scores to
be fitted. The problem of how many PC scores to use is the biggest issue in applying PCA machinery.
The problem was solved in a theoretical Bayesian Information context by Serio et al. [4], who applied
an optimal criterion (the Bayesian Information Criterion (BIC) [18]) to select the suitable number of
PC scores to represent the signal. In this way, there is no subjective user intervention within the
scheme. The approach can directly determine the optimal number of PC scores to represent the signal,
hence how to recover S and get the spectral residual O-S from which we can estimate Sε.

This approach was considered to assess the instrument noise of IASI-C, which was launched
on 7 November 2018 onboard the Metop-C payload (Metop stands for Meteorological Operational
satellite). The first IASI (IASI-A) was launched in 2006; IASI-C is the third of the series.

Application of the technique was extended also to the American CrIS on board the United
States Suomi National Polar Partnership (NPP) Polar-Orbiting Operational Environmental Satellite
(e.g., see https://www.nasa.gov/mission_pages/NPP/news/cris-operational.html) and the Chinese
HIRAS (Hyperspectral Infrared Atmospheric Sounder) flying on the payload FY-3D (see, e.g., http:
//gsics.nsmc.org.cn/data/en/code/FY3D.html).

https://www.nasa.gov/mission_pages/NPP/news/cris-operational.html
http://gsics.nsmc.org.cn/data/en/code/FY3D.html
http://gsics.nsmc.org.cn/data/en/code/FY3D.html
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The paper is organized as follows. Section 2 deals with a description of the data. A brief account
of the methodology is also presented in this section. Section 3 is devoted to the presentation of results.
Section 4 shows a discussion about the results.

2. Data and Methods

In this section, we first provide a discussion about the data we used and then show the
basic of PCA-BIC methodology for the estimation of instrument noise: both radiometric noise and
covariance matrix.

2.1. Data

The instrument IASI [19] was designed, developed, and manufactured by CNES (Centre
National d’Etudes Spatiales) in France, within a joint-venture with the European Organization for the
Exploitation of Meteorological Satellite (EUMETSAT). IASI is flying onboard the Metop (Meteorological
Operational Satellite) and its main mission is to provide information on temperature and water vapor
profiles. The spectral coverage of IASI extends from 645 to 2760 cm−1. The sampling interval is
∆σ = 0.25 cm−1, which, considering the bandwidth of 2115 cm−1, yields 8461 channels or spectral
radiances for each single spectrum. The main characteristics of the IASI instrument are summarized in
Table 1.

Table 1. IASI instrument and scanning characteristics.

Characteristic Value Units

Spectral Coverage 645 to 2760 cm−1

Number of Bands 3
Spectral Coverage Band 1 645 to 1210 cm−1

Spectral Coverage Band 2 1210 to 2000 cm−1

Spectral Coverage Band 3 2000 to 2760 cm−1

Scan Type Step and Stare
Scan Rate 8 s

Stare Interval 151 ms
Step Interval 8/37 s

Pixels for Field of Regard (FOR) 2× 2
Swath ±48.333 degrees

Swath width ±1100 km
Number of FOR per Swath width 30

Single Pixel or Instantaneous Field of View (IFOV) shape at nadir circular
IFOV size at nadir 12 km

IFOV size at edge of scan line across track 39 km
IFOV size at edge of scan line along track 20 km

The data we used in this analysis were acquired by the IASI-C instrument, which is flying
on Metop-C. We used a set of IASI spectra from one whole orbit on 21 November 2019. The data
consist of spectral radiances at the level 1C. These are calibrated spectra and Gaussian apodized [1].
Because of Gaussian apodization, IASI level 1C radiances are correlated. The correlation introduced by
apodization is shift-invariant, i.e. it does not depend on the wave number and, for a given channel
centered at σ0, it drops symmetrically to zero after three wave numbers. That is the correlation with
a channel centered at generic wave number σ is zero if ‖σ− σ0‖ > 3× ∆σ, with ∆σ = 0.25 cm−1 the
IASI sampling interval.

In effect, this is not the only source of correlation in IASI level 1C data. An extensive assessment
of the IASI instrument noise performed on the basis of IASI-A-B spectra has shown that IASI
has extra correlation mostly affecting the spectral region around the merging of IASI bands [3,15].



Sensors 2020, 20, 1492 4 of 19

This extra-correlation is likely the effect of mechanical micro-vibrations of the instrument, although data
post-processing could also play a role.

The radiometric noise of IASI-C is shown in Figure 1 in terms of Noise Equivalent Difference
radiance (NEDN). This is the square root of the diagonal of the covariance matrix shown in Figure 2.
The observational covariance matrix, shown in Figure 2, also referred to as level 1C noise, applies to
IASI apodized radiances. It is the best estimate as obtained by CNES engineers during the pre-flight
and the first month in-orbit operations for IASI-C [20]. These noise figures have to be intended as
an average for the four IASI IFOVs or pixels.

Slight variations among pixels are expected to exist, although these are not a concern of this study,
which mostly focused on exemplifying and demonstrating the PCA methodology.
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Figure 1. IASI-C radiometric noise in units of NEDN (W-m−2 sr−1 (cm−1)−1). The noise has been
averaged over the four IASI pixels or IFOVs.
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Figure 2. IASI-C Sε transformed to correlation matrix; the diagonal has been subtracted to better
identify correlation structures.

In Figure 2, it is quite clear that there is an excess of correlation corresponding to spectral range
centered at 1200 cm−1; an excess of correlation, although fainter, is also seen at 2000 cm−1. These are
the spectral intervals where IASI bands 1 and 2 and bands 2 and 3 are merged, respectively. At both
merging of bands, we have a long-range correlation structure with a cyclic behavior, which extends
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back to the beginning of band 1 at 645 cm−1. We stress that this behavior has been long ignored and
not modeled for the covariance matrix of both IASI-A and -B. The structure was first evidenced by
Serio et al. [3], Masiello et al. [15], who assessed that the correlation was not a result of atmospheric
signal. We also stress that. for the correlation matrix shown in Figure 2, the covariance model has to be
intended as an average over the four IASI pixels, and pixel-to-pixel variations can be expected. Finally,
we note that the IASI-C noise model is still under analysis at CNES and refinements could be expected,
although not changing the pattern shown in Figure 2. The radiometric noise and related covariance
matrix in Figures 1 and 2 are referred to as IASI nominal noise in the rest of this paper.

The American Cross-track Infrared Sounder (CrIS) provides infrared emission spectra over
three wavelength ranges: LWIR (648.75–1096.25 cm−1), MWIR (1207.50–1752.50 cm−1), and SWIR
(2150–2555 cm−1). As with IASI, CrIS has a calibration unit, which performs views of the internal
calibration target (ICT, warm calibration point) and a deep space view (DS, cold calibration point).

The three spectral bands of CrIS are not merged together and their spectral sampling can depend
on the way the interferogram is sampled. In fact, the instrument can be operated in the full spectral
resolution (FSR) mode, which corresponds to the interferogram recorded with the maximum optical
path difference (MOPD) equal to 0.8 cm for each band. In this case, the sampling is ∆σ = 0.625 cm−1 for
all bands. However, for operations, the CrIS interferogram can also be recorded in the so-called normal
spectral resolution mode (NSR) with MPOD of 0.8, 0.4, and 0.2 cm for the LWIR, MWIR, and SWIR
bands, respectively, which leads to the sampling of ∆σ = 0.625 cm−1 for the LWIR, 1.25 cm−1 for the
MWIR, and 2.5 cm−1 for the SWIR. The main characteristics of the CrIS instrument are summarized in
Table 2.

Table 2. CrIS instrument and scanning characteristics.

Characteristic Value Units

Spectral Coverage 648.75 to 2555 cm−1

Number of Bands 3
Spectral Coverage Band 1 648.75 to 1096.25 cm−1

Spectral Coverage Band 2 1207.50 to 1752.50 cm−1

Spectral Coverage Band 3 2150 to 2555 cm−1

Scan Type Step and Stare
Scan Rate 8 s

Pixels for Field of Regard (FOR) 3× 3
Swath ±50 degrees

Swath width ±1100 km
Number of FOR per Swath width 30

Single Pixel or Instantaneous Field of View (IFOV) shape at nadir circular
IFOV size at nadir 14 km

The data we used for CrIS were acquired on 30th of September 2015 and 9th of November 2015.
The CrIs was operated in the normal spectral resolution or NSR mode. The observations consist of
unapodized spectral radiances at the normal spectral resolution of 0.625 1.25, and 2.5 cm−1 for bands
LWIR, MWIR, and SWIR, respectively.

Figure 3 shows the radiometric noise for CrIS in terms of NEDN (e.g., [17]). The data shown in
Figure 3 have been reprocessed because the original radiometric noise refers to unapodized spectral
radiances at the FSR mode of 0.625 cm−1 for all CrIS bands. The data points for band 2 (MWIR) have
been reduced a factor

√
2 and those for band 3 (SWIR) a factor 2 to take into account the resampling at

1.25 and 2.5 cm−1, respectively. Considering the work by Han et al. (2015) [17], this should be kept
in mind when comparing to our results that we show in Section 3. The radiometric noise figures in
Figure 3 are referred to as CrIS nominal noise in the remaining of this paper. Unlike IASI, for CrIS,
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there is no special prescription for the off-diagonal terms of the covariance matrix, which is normally
assumed diagonal. This applies indifferently to unapodized radiances in the FSR mode or NSR mode.
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Figure 3. CrIS radiometric noise in units of NEDN (W-m−2 sr−1 (cm−1)−1) for the three bands of
the instrument.

The Chinese HIRAS (Hyperspectral Infrared Atmospheric Sounder, e.g., [21]) is quite similar to
CrIS as far as the instrument concept is concerned and similar to IASI for the scan pattern geometry
(29 FOR covering a swath of 2800 km; each FOR consists of a 2× 2 matrix of IFOVs; and each IFOV
has a ground resolution of 16 km). HIRAS has three spectral bands: LWIR or band 1 (650–1136 cm−1),
MWIR or band 2 (1210–1750 cm−1), and SWIR or band 3 (2155–2550 cm−1). As with CrIS, the full
spectral resolution is 0.625 cm−1 and each HIRAS scan includes views of the internal calibration target
(ICT, warm calibration point) and a deep space view (DS, cold calibration point). The spectra acquired
during these views are used to estimate the radiometric noise, which consists of spectral standard
deviation of HIRAS spectra acquired by looking at the cold space and at the internal warm blackbody
target. The warm and cold targets’ noise estimates are provided with the HIRAS data. For our purpose,
they were averaged to form the HIRAS nominal noise , which is shown in Figure 4. As done for CrIS and
IASI, for HIRAS, the nominal noise in Figure 4 was obtained by averaging over the four HIRAS pixels.

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

wave number (cm-1)

10-6

10-5

10-4

10-3

10-2

R
a
d
io

m
e
tr

ic
 n

o
is

e
, 
N

E
D

N
 (

W
 m

-2
 s

r-1
 (

c
m

-1
)-1

)

Figure 4. HIRAS radiometric noise in units of NEDN (W-m−2 sr−1 (cm−1)−1) for the three bands of
the instrument. The radiometric figures have been obtained by averaging over the four HIRAS pixels
and correspond to the FSR sampling of 0.625 cm−1 of the instrument.
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For HIRAS, we have a dataset acquired on 15 July 2019 over the Indian Ocean. The data consist of
unapodized, calibrated spectral radiances at FSR of 0.625 cm−1. Similar to CrIS, for HIRAS, there is
no special prescription for the off-diagonal terms of the covariance matrix, which is assumed to
be diagonal.

2.2. Methods

In this section, we summarize the PCA methodology we devised to get an estimate of the
observational covariance matrix of high spectral resolution infrared sensors.

First, let R be a radiance vector of size d. We assume to have an ensemble of observed
d-dimensional vectors Ri, i = 1, . . . , N. The ensemble average R̄ is defined as usual,

R̄ =
1
N

N

∑
i=1

Ri (1)

For the generic radiance vector R, we assume an additive signal noise model,

R = s + ε (2)

with s the signal and where the noise term ε is assumed Gaussian, zero mean, and covariance matrix
Sε. Next, we define the normalized, zero mean, vector, xi, according to

xi = S̃−
1
2

ε (Ri − R̄) (3)

where S̃ε is any suitable a priori estimate of the observational covariance matrix. This should not
be confused with the true, unknown, noise covariance, Sε. The normalizing covariance S̃ε can be
computed in many ways, e.g., it could be set to the radiometric specifications or it could be assumed
equal to any estimation obtained during the pre-flight operations. If available, one could use the best
estimate obtained, e.g., based on the blackbody calibration unit.

Let X be the d× N matrix whose columns are the normalized observations, xi. An orthogonal
basis for the d-dimensional vectors xi is obtained by Singular Value Decomposition (SVD) of the
symmetric, covariance matrix

S =
1
N

XXt (4)

where the superscript t means transpose operation. Finally, the SVD decomposition of S is obtained
according to

S = UΛUt (5)

with the matrix U unitary and orthogonal and where Λ is a diagonal with elements (eigenvalues),
λj, j = 1, . . . , d, and with λ1 > λ2 > ...λd. The PCA scores are given by,

ci = Utxi (6)

and the elements of the vector ci are uncorrelated, i.e. their covariance matrix is diagonal values
λj, j = 1, . . . , d. The matrix U has size d× d and, considering only its first τ column (eigenvectors),
we obtain a truncated principal component projection, or reconstructed radiance vector,

R̂i = S̃
1
2
ε (Uτci) + R̄ (7)

where the matrix Uτ is the matrix U with the first τ columns retained and the remaining d− τ set to
zero. The truncation point τ can take a value within the range 1, . . . , d.
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For a redundant signal, such as the spectral radiance, assuming correct choice of τ, an estimate,
Ŝε of the the covariance matrix, Sε of the noise term, ε can be obtained according to,

Ŝε =
1
N

N

∑
i=1

(
Ri − R̂i

) (
Ri − R̂i

)t (8)

Considering Equation (7) and the orthogonal properties of the PC scores, after a bit algebra, we have

Ŝε = S̃
1
2
ε U−τΛUt

−τS̃
t
2
ε (9)

with U−τ = U−Uτ . Equation (9) has a simple meaning once we consider that the matrix U−τ is the
complement to Uτ , that is it is the matrix U with the first τ columns zeroed and the remaining d− τ

unchanged. In Equation (9), if we assume τ correct, the eigenvectors and eigenvalues of the signal are
discarded, while only those corresponding to the noise are retained.

From Equation (9), it is seen that, if we change τ, we do not need to recompute the residuals.
Furthermore, Equation (9) should not be confused with the covariance matrix of the reconstructed
vector R̂i. The elements of the vector R̂i are linearly dependent, because they have been obtained
from τ < d independent PC scores, therefore the covariance matrix of R̂i is singular: it does not have
an inverse [15].

It has to be stressed that the correct choice of τ is critical for the scheme to work (e.g., see [4]).
However, the SVD machinery does not contain any tool to choose the correct τ. If we take τ too small,
we still have the contribution from the signal. If we take τ too large, we could reduce the bandwidth
of the noise, which, we stress, extends over the total range of τ = 1, . . . , d and underestimate the
noise variance.

At a naive level, we might choose τ large enough that the signal has dropped to zero. However,
we stress that a too large τ reduces the noise bandwidth within the residuals and should be avoided.
One possible way to move on is to select τ based on a suitable optimal criterion, which guarantees that
the main features of the signal are extracted. Such a criterion has been identified to be the Bayesian
Information Criterion (BIC) [18]. For the problem at hand, it has been shown (e.g., [4]) that the BIC
curve as a function of τ can be written as

BIC(τ) =

(
N

d

∑
j=1

log λj + N(d− τ) log

(
1

d− τ

d

∑
j=τ+1

λj

)
+ (τ + k) log N

)
(10)

with k = dτ − τ(τ − 1)/2 + d + 1 [4]. One useful property of BIC is that it is guaranteed to select the
true model, in case it is among the candidates, as N → ∞. According to the BIC criterion, the optimal
τ is that τ which minimizes Equation (10).

Before passing to results, we discuss the problem of how we can assess the statistical uncertainty
of the estimator given by Equation (8). In effect, for a covariance statistics or estimator such as
that of Equation (8), under the assumptions of Gaussian noise, the uncertainty is given by the
Wishart distribution (e.g., [22]), which provides the statistical probability distribution of the sample
covariance matrix.

Let sij denote the true value of the element i, j of the matrix Sε, then the variance of the estimate
Ŝε(i, j) is given by

var
(
Ŝε(i, j)

)
=

1
N
(s2

ij + siisjj) (11)

which for i = j (variance or diagonal terms) becomes

var
(
Ŝε(i, i)

)
=

2
N
(s2

ii) (12)
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Thus, we see that the variance of the estimate is proportional to square of the true variance and
inverse proportional to the statistical weight N or number of samples (spectra in our case). Therefore,
the uncertainty of the radiometric noise estimate is, in percentage of the true value, of the order of
≈
√

2/N, which for the analysis presented here, considering that N ≈ 104, yields a value of the order
of ≈1–2%. As far as the bias is concerned, an extensive error analysis performed in simulation (e.g.,
see [4]) showed that the bias is nearly zero once the correct τ is selected, which is possible to do by
using the BIC criterion (e.g., see [4]).

3. Results

In this section, we show the main results we have found by applying the methodology in
Section 2.2 to IASI, CrIS, and HIRAS.

3.1. IASI

To implement the procedure for IASI, we need to select a proper S̃ε for normalization. This is
assumed to be the very first CNES release (2006) of the covariance matrix, which was developed to
characterize the instrument noise of IASI-A (e.g., see [4,23]). This matrix models only the correlation
because of apodization. Additional source due, e.g., to mechanical vibrations are not represented.
The radiometric noise corresponding to this matrix (that is the square root of the diagonal) is shown
in Figure 5 and is compared with the best estimate of the nominal radiometric noise for IASI-C also
shown in Figure 1. We purposely do not use the covariance matrix shown in Figure 2 for normalization,
because we keep it for comparison to our results.
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Figure 5. Diagonal of the normalizing matrix S̃ε used for IASI and comparison with the IASI-C nominal
radiometric noise in units of NEDN (W-m−2 sr−1 (cm−1)−1) (also shown in Figure 1).

The results for the radiometric noise (square root of the diagonal of the matrix Ŝε computed
according to Equation (9)) are shown in Figure 6 for three different sets of observations:

• Cloudy tropical set: This consists of 14,321 spectra selected in the tropical belt (−35◦ to 35◦

latitude) with a cloud fraction CF = 100%.
• Clear tropical set: This consists of 9324 spectra selected in the tropical belt (−35◦ to 35◦ latitude)

with a cloud fraction CF ≤ 5%.
• Clear High-Latitude set: This consists of 11,230 spectra selected at latitude (north and south)

higher than 60◦ with a cloud fraction CF ≤ 5%.
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The cloud fraction was assessed with the native cloud mask of IASI Level 1C data as released by
EUMETSAT (the cloud mask is based on the Advanced Very High Resolution Radiometer (AVHRR)
imagery) and a cloud detection scheme developed in [24,25].

These three ensembles were set up to consider hot, warm, and cold Earth-scene views, hence to
investigate a possible dependence of instrument noise on the scene radiation (scene photon noise or
shot noise).
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Figure 6. Results for the radiometric noise for the IASI-C instrument. The figure also shows the noise
used for normalization and the nominal radiometric noise according to the CNES release [20].

The results obtained by applying our PCA-BIC methodology are shown in Figure 6. A summary
of the number of PC scores and τ selected by the BIC criterion is given in Table 3. Figure 6 shows that
the methodology is capable of retrieving the correct radiometric noise also in the case the covariance
matrix used for normalization is far apart from the true noise. We recall that, in the present analysis,
the true radiometric noise was assumed to be that released by Chinaud et al. [20]. Figure 6 also shows
that the estimation problem at hand is largely linear and our approach leads to convergence in one step
(for further details, we refer the reader to [4]). It is also important to note that the radiometric noise
does not show a strong dependence with the Earth-scene views. In effect, the tropical and High-Lat
IASI spectra lead to almost exactly the same radiometric noise. In addition, it should be stressed that
the radiometric noise released by CNES was assessed with blackbody spectra at a target temperature
of some 290 K. The noise does not seem to be dominated by the scene radiation, a result which parallels
that found for CrIS [2].

We also investigated a possible dependence of the radiometric noise on the pixel or IFOV.
We remember that IASI has a Field of Regard (FOR) composed with a matrix of 2× 2 pixels. These pixels
or IFOVs are sensed through diverse detectors (the detectors are twelve because for each pixel we have
three detectors, one for each of the three bands).

For the sake of brevity, the analysis is shown in Figure 7a for a set of all-sky tropical spectra
(0 ≤ CF ≤ 100%). In addition, for this numerical experiment, the optimal τ selected through the BIC
criterion is shown in Table 3. Figure 7a shows that there is no important dependence on the pixel.
In the core of IASI band 1, it seems that pixels 1 and 2 perform slightly better than pixels 3 and 4.
This results is also confirmed when we look at Figure 7b, where the CNES release is shown.
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Figure 7. (a) Results for the radiometric noise for the IASI-C instrument as a function of the IASI pixel
or IFOV; and (b) same as (a), but now for comparison the CNES release of the nominal radiometric
noise is shown.

Finally, we investigated the problem of correlation among channels by considering the full
estimated covariance matrix, Ŝε. In addition, in this case, for the sake of brevity, the analysis is shown
for the set of tropical spectra with CF = 100%. Figure 8 shows the full estimated observational matrix
transformed to correlation. This can be compared to that released by CNES (Figure 2). Although the
estimate shown in Figure 8 appears a bit noisy, the comparison with Figure 2 does show an excess of
correlation especially in the merging of bands 1 and 2. The correlation structure around 1200 cm−1 is
correctly reproduced, as it is possible to better see from Figure 9, which shows a zoom in the spectral
interval where band 1 and 2 are merged. The comparison with the CNES release shows that the
estimate obtained based on Earth-scene views is strikingly good in recovering the correlation patterns.
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Figure 8. IASI-C Sε transformed to correlation matrix estimated on the basis of Earth-scene views.
The diagonal has been subtracted to allow for a better visual inspection for possible correlation patterns.
Results have been averaged over the four IASI pixels.
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Figure 9. (a) IASI-C Sε transformed to correlation matrix estimated on the basis of Earth-scene views.
The figure zooms in the spectral range corresponding to the merging of IASI bands 1 and 2. (b) The
same as in (a), but now the CNES release is shown for comparison. The diagonal has been subtracted
to allow for a better visual inspection for possible correlation patterns. Results have been averaged
over the four IASI pixels.

3.2. CrIS

For CrIS, the covariance matrix used to normalize the data is diagonal with the diagonal elements
equal to the square of the nominal radiometric noise shown in Figure 3. Because of this normalization,
we do not expect large deviation of the estimated radiometric noise (especially for CrIS band 1 or
LWIR) from that shown in Figure 3, because, as mentioned, the figure refers to an assessment of CrIS
noise performed in December 2018 [17] with the data recorded at the FSR mode. We do expect possible
differences in band 2 and largely in band 3 because of the resampling performed for these two bands.
We recall that the original NEDN shown in Figure 3 was obtained at the CrIS full spectral resolution of
0.625 cm−1 and simply rescaled to the nominal sampling of bands 2 and 3, respectively.

The results for two datasets (one corresponding to September 2015 and the second to November 2015)
are shown in Figure 10 and compared to the nominal radiometric noise shown in Figure 3. In addition,
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for this case, the optimal τ selected through the BIC criterion is shown in Table 3. In Figure 10, we see that
the two datasets do not show any important differences: the two radiometric noise curves perfectly overlap
in each band. As expected, for LWIR, we found a very nice agreement with CrIS noise performance [17]
because in this case we use exactly the same sampling of 0.625 cm−1. For the MWIR and SWIR, although
we do take into account the factors

√
2 and 2 for MWIR and SWIR, respectively, our results show a slightly

better performance. Our results are fully in agreement with the findings shown in [17]. In fact, according
to Han et al. [17], the radiometric noise at FSR mode is expected to be larger than those at NSR mode,
and we stress that our CrIS spectral radiances have been processed at NSR mode. In addition, we stress
that the results shown in Figure 10 were obtained by averaging over the nine CrIS pixels in order to
improve statistics.
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Figure 10. Results for the radiometric noise for the CrIS instrument. The figure also shows the noise
used for normalization, which in this case corresponds to the CrIS radiometric noise assessed in [17].
The results have been averaged over the nine CrIS pixels or IFOVS.

Finally, also for CrIS, we checked for non-zero off-diagonal terms in the covariance matrix.
The correlation matrix for the dataset on 30 September 2015 is shown in Figure 11 for the three CrIS
bands. It is seen that, for bands 1 and 2, there is no strong evidence of extra correlation. Therefore,
the use of a diagonal covariance matrix is correct. Conversely, for band 3, we do see an excess of
correlation, although this is limited to below ±0.3. The same pattern is seen also with the second
dataset recorded on 9 November 2015 and not shown here for the sake of brevity. This excess of
correlation, mostly seen in band 3, is in agreement with the results shown in [17]. According to Han et
al. [17], the correlation is due to the self-apodization correction and increase at high-frequency channels
of the short-wave band spectra.
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Figure 11. CrIS estimated correlation matrix (data set on 30 September 2015) for: (a) LWIR; (b) MWIR;
and (c) SWIR. The sampling is 0.625 (LWIR), 1.25 (MWIR), and 2.5 cm−1 (SWIR). In all correlation
matrices, the diagonal has been subtracted to allow for a better visual inspection for possible correlation
patterns. The results have been averaged over the nine CrIS pixels or IFOVS.

3.3. HIRAS

For HIRAS, the covariance matrix used to normalize the data is diagonal with the diagonal
elements equal to square of the nominal radiometric noise shown in Figure 4. The sampling interval
∆σ is equal to 0.625 cm−1 for each HIRAS band. As for CrIS, because of this normalization, we do
not expect large deviation of the estimated radiometric noise from that shown in Figure 4, because,
as mentioned, the figure refers to the HIRAS nominal noise obtained directly from the blackbody
calibration targets (both warm and cold).

The results for the radiometric noise are summarized in Figure 12 and compared to that shown in
Figure 4. The dataset used in the analysis is made up of tropical spectra recorded on 15 July 2019 over
the Indian Ocean. For the sake of brevity, no attempt was done to perform an analysis for single pixels.
The analysis was also performed with spectra at higher latitudes and we confirmed the same results
we show for the tropical belt.

The optimal τ selected by the BIC criterion is again shown in Table 3. In Figure 12, we see that
HIRAS noise is better than the nominal one in all bands and specifically in the SWIR band. This result
parallels that shown in [9]. Overall, we can say that the noise largely behaves as expected.

As done for IASI-C and CrIS, we now show and discuss the estimated correlation for the three
bands. The results are shown in Figure 13.
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Figure 12. Results for the radiometric noise for the HIRAS instrument. The figure also shows the noise
used for normalization, which in this case correspond to the HIRAS nominal radiometric noise shown
in Figure 4. Results have been averaged over the four HIRAS pixels.
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Figure 13. HIRAS estimated correlation matrix (dataset corresponding to the tropical belt and recorded
on 8–9 June 2018) for: (a) LWIR; (b) MWIR; and (c) SWIR. The sampling is 0.625 cm−1 in each band.
In all correlation matrices, the diagonal has been subtracted to allow for a better visual inspection for
possible correlation patterns. Results have been averaged over the four HIRAS pixels.
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In Figure 13, at a first glance, we cannot see any long-range correlation pattern as is the case, e.g.,
for IASI-C; however, a short range correlation develops around the diagonal, which is mostly visible
in HIRAS band 3 or SWIR. A signature around the diagonal appears also in bands 1 (LWIR) and 2
(MWIR), but this is fainter than that in band 3. This kind of short range correlation is most likely due
to the application of correcting filters to the original interferogram samples. It is likely that the filter
acts as a sort of apodization and lowers the variances at the expense of off-diagonal terms. This effect
could also explain the results we show in Figure 12 for the SWIR spectral band.

Finally, Table 3 allows us to compare the various values of the optimal τ, selected through the BIC
criterion, for the various experiments. We see that for IASI the use of the three bands merged together
leads to a larger τ than that selected for CrIS and HIRAS. We think that this effect is because IASI has
a better spectral sampling, which, combined to the three bands merged together, increases the signal
complexity, hence the larger τ to represent the data.

Table 3. Number of PC scores used in the analysis for the different instruments and datasets. For IASI,
all bands are merged together.

Data Set τ No. SpectraBand 1 Band 2 Band 3

IASI

Tropical CF = 100% 298 14321
Tropical CF ≤ 5% 185 9324

High Latitude CF ≤ 5% 276 11230
Pixel 1 253 10240

Tropical Pixel 2 288 10240
all sky Pixel 3 230 10240

Pixel 4 225 10240

CrIS

September 2015 95 75 20 10080
November 2015 89 78 22 9360

HIRAS

July 2019 93 83 34 8320

4. Discussion

The PCA methodology developed in [3,4] was used to assess the radiometric characteristics of
three major high-spectral-resolution infrared sensors, which have been put in orbit to pursue the
objective of improving Numerical Weather Forecasts.

We showed that IASI-C behaves according to what was expected based on the analysis performed
during the pre-flight and the commissioning phase, which ended May 2019. The instrument shows
correlation patterns, which reach consistent values mostly in the merging of bands 1 and 2. It seems
that CNES engineers can now reproduce these complicated correlation patterns and properly take
them into account into the observational covariance matrix (e.g., see Figure 2). We also showed that
the radiometric performance of the four IASI pixels is quite homogeneous and we could not see any
important deviation of one pixel from the others.

In the case of CrIS, we confirmed the excellent radiometric noise performance, which has
been reported in previous studies (e.g., [2]). In agreement with Han et al. [17], it seems that,
once resampled at 1.25 cm−1 in the MWIR and 2.5 cm−1 in the SWIR, CrIS performed even better
than expected on a simple statistical scaling of the radiometric noise. Again, in agreement with
Han et al. [17], we evidenced an excess of unexpected correlation in band 3, which is likely the effect
of the self-apodization correction.

Finally, for HIRAS, we confirmed that the instrument is behaving as expected. However,
once again, we noticed unexpected extra-correlation terms, which tend to be more consistent along
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the diagonal (short-range correlation). The origin of this correlation, which reaches its maximum
in HIRAS band 3, is likely the effect of corrections applied with the algorithms for processing the
spectral radiances.

To summarize our analysis, Figure 14 compares the radiometric noise of the three instruments.
For CrIS, we used the data provided to us by Han et al. [17] because they apply to the CrIS standard
sampling of 0.625 cm−1 and, therefore, can be directly compared to the HIRAS radiometric noise as
estimated in this study (see Figure 12). For IASI, we showed values calculated at the present sampling
of 0.25 cm−1 (level 1C, apodized data) and those after properly rescaling IASI at CrIS nominal sampling
(IASI at CrIS resolution) of 0.625 cm−1 unapodized.
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Figure 14. Comparison of IASI, CrIS, and HIRAS radiometric noise. The CrIS data shown in the figure
are those provided to us by Han et al. [17], which apply to the CrIS standard sampling of 0.625 cm−1.
In this way, they can be directly compared to those of HIRAS. For IASI, we show both the radiometric
noise at the original sampling and those properly rescaled at CrIS standard sampling.

It is seen that CrIs behaves better than IASI and HIRAS in bands 1 and 3. IASI still has a slightly
better performance in band 2. Overall, HIRAS compares well with IASI original sampling, but it
provides a number of spectral radiances, which is a factor 3.6 smaller.
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Abbreviations

The following abbreviations are used in this manuscript:

CMA China Meteorological Administration
CNES Centre National d’Etudes Spatiales
CrIS Cross-track Infrared Sounder
DS Deep Space, cold blackbody source
EPS European Polar System
EUMETSAT European Organization for the Exploitation of Meteorological Satellite
FOR Field of Regard
FSR Full Spectral Resolution
HIRAS Hyper-spectral Infrared Atmospheric Sounder
IASI Infrared Atmospheric Sounder Interferometer
ICT Internal Calibration Target, warm blackbody source
IFOV Instantaneous Field of View
LWIR Long Wave InfraRed
Metop Meteorological Operational platform
MPD Maximum Path Difference
MWIR Mid Wave InfraRed
NEDN Noise Equivalent Difference Radiance
NSMC National Satellite Meteorological Center
NSR Normal Spectral Resolution
SWIR Short Wave InfraRed
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