Let F be a field of characteristic zero and p a prime. In the present paper it is proved that a variety of Z_p-graded associative PI F-algebras of finite basic rank is minimal of fixed Z_p-exponent d if, and only if, it is generated by an upper block triangular matrix algebra UTZ_p(A_1,…,A_m) equipped with a suitable elementary Z_p-grading, whose diagonal blocks are isomorphic to Z_p-graded simple algebras A_1,…,A_m satisfying dimF⁡(A_1⊕⋯⊕A_m)=d.

A characterization of minimal varieties of Zp-graded PI algebras

Di Vincenzo Mario;
2019-01-01

Abstract

Let F be a field of characteristic zero and p a prime. In the present paper it is proved that a variety of Z_p-graded associative PI F-algebras of finite basic rank is minimal of fixed Z_p-exponent d if, and only if, it is generated by an upper block triangular matrix algebra UTZ_p(A_1,…,A_m) equipped with a suitable elementary Z_p-grading, whose diagonal blocks are isomorphic to Z_p-graded simple algebras A_1,…,A_m satisfying dimF⁡(A_1⊕⋯⊕A_m)=d.
2019
File in questo prodotto:
File Dimensione Formato  
Classificationminimalgraded.pdf

accesso aperto

Descrizione: versione pre-print dell'articolo
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 416.57 kB
Formato Adobe PDF
416.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/141304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact