We consider Cannon cone types for a surface group of genus g, and we give algebraic criteria for establishing the cone type of a given cone and of all its sub-cones. We also re-prove that the number of cone types is exactly 8g(2g - 1)+1. In the genus 2 case, we explicitly provide the 48x 48 matrix of cone types, and we prove that it is primitive, hence Perron-Frobenius. Finally we define vector-valued multiplicative functions and we show how to compute their values by means of the matrix of cone types.

On Cannon cone types and vector-valued multiplicative functions for genus-two surface group

Sandra Saliani
2019-01-01

Abstract

We consider Cannon cone types for a surface group of genus g, and we give algebraic criteria for establishing the cone type of a given cone and of all its sub-cones. We also re-prove that the number of cone types is exactly 8g(2g - 1)+1. In the genus 2 case, we explicitly provide the 48x 48 matrix of cone types, and we prove that it is primitive, hence Perron-Frobenius. Finally we define vector-valued multiplicative functions and we show how to compute their values by means of the matrix of cone types.
2019
File in questo prodotto:
File Dimensione Formato  
OCCTArXiv.pdf

accesso aperto

Descrizione: Articolo su ArXiv
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 852.84 kB
Formato Adobe PDF
852.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/135158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact