Drought stress is one of the major environmental stresses that limit crop production in arid regions. A greenhouse culture experiment was conducted to evaluate the response of an agronomically and economically important sweet medical herb (Stevia rebaudiana) to polyethylene glycol (PEG 6000)-induced drought stress (5, 10, and 15% (w/v) PEG, equivalent to leaf water potentials of − 0.49, − 1.40 and − 2.93 MPa, respectively) for 1 month. Plant mass, a major determinant of Stevia yield, showed a reduction after PEG treatments. PEG-reduced photosynthesis traits included the maximal quantum yield of photosystem II (Fv/Fm), efficiency of photosystems I and II (PIabs), intercellular CO2, net photosynthesis, chlorophylls, carotenoids and water use efficiency, followed by the reduction of carbohydrates. Under PEG treatment, the reactive oxygen species (ROS) accumulation occurred and plants exhibited an increase in H2O2 generation. Consequently, an increase in malondialdehyde and electrolyte leakage was evident in PEG treatment, indicating membrane lipid peroxidation. In PEG-treated plants, the ROS accumulation was accompanied by an increase in activity of some enzymatic and non-enzymatic antioxidants. Leaf extracts of PEG-treated plants showed lower superoxide anion, hydroxyl and nitric oxide radical scavenging activity than control plants. Drought stress also caused the accumulation of the compatible solutes proline and glycine betaine. Collectively, the results demonstrated that PEG-induced oxidative stress, due to insufficient antioxidant mechanisms, provoked damages to cell membrane and photosynthetic apparatus, with consequently reduced carbohydrates and plant growth. These results are of basic importance as vegetative growth is the major determining criterion for Stevia crops and adequate irrigation is crucial for obtaining higher yield.

The effect of polyethylene glycol-induced oxidative stress on photosynthesis, carbohydrates and cell membrane in Stevia rebaudiana grown in greenhouse

Sofo A;
2018-01-01

Abstract

Drought stress is one of the major environmental stresses that limit crop production in arid regions. A greenhouse culture experiment was conducted to evaluate the response of an agronomically and economically important sweet medical herb (Stevia rebaudiana) to polyethylene glycol (PEG 6000)-induced drought stress (5, 10, and 15% (w/v) PEG, equivalent to leaf water potentials of − 0.49, − 1.40 and − 2.93 MPa, respectively) for 1 month. Plant mass, a major determinant of Stevia yield, showed a reduction after PEG treatments. PEG-reduced photosynthesis traits included the maximal quantum yield of photosystem II (Fv/Fm), efficiency of photosystems I and II (PIabs), intercellular CO2, net photosynthesis, chlorophylls, carotenoids and water use efficiency, followed by the reduction of carbohydrates. Under PEG treatment, the reactive oxygen species (ROS) accumulation occurred and plants exhibited an increase in H2O2 generation. Consequently, an increase in malondialdehyde and electrolyte leakage was evident in PEG treatment, indicating membrane lipid peroxidation. In PEG-treated plants, the ROS accumulation was accompanied by an increase in activity of some enzymatic and non-enzymatic antioxidants. Leaf extracts of PEG-treated plants showed lower superoxide anion, hydroxyl and nitric oxide radical scavenging activity than control plants. Drought stress also caused the accumulation of the compatible solutes proline and glycine betaine. Collectively, the results demonstrated that PEG-induced oxidative stress, due to insufficient antioxidant mechanisms, provoked damages to cell membrane and photosynthetic apparatus, with consequently reduced carbohydrates and plant growth. These results are of basic importance as vegetative growth is the major determining criterion for Stevia crops and adequate irrigation is crucial for obtaining higher yield.
2018
File in questo prodotto:
File Dimensione Formato  
2018 - Hajihashemi & Sofo - APP.pdf

accesso aperto

Descrizione: Lavoro
Tipologia: Pdf editoriale
Licenza: DRM non definito
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/134158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact