It has been estimated that about 2% of global carbon dioxide emissions can be attributed to IT systems. Green (or sustainable) computing refers to supporting business critical computing needs with the least possible amount of power. This phenomenon changes the priorities in the design of new software systems and in the way companies handle existing ones. In this paper, we present the results of a research project aimed to develop a migration strategy to give an existing software system a new and more eco-sustainable lease of life. We applied a strategy for migrating a subject system that performs intensive and massive computation to a target architecture based on a Graphics Processing Unit (GPU). We validated our solution on a system for path finding robot simulations. An analysis on execution time and energy consumption indicated that: (i) the execution time of the migrated system is less than the execution time of the original system; and (ii) the migrated system reduces energy waste, so suggesting that it is more eco-sustainable than its original version. Our findings improve the body of knowledge on the effect of using the GPU in green computing. © 2015 World Scientific Publishing Company.
On the effect of exploiting gpus for a more Eco-sustainable lease of life
SCANNIELLO, GIUSEPPE;ERRA, UGO;
2015-01-01
Abstract
It has been estimated that about 2% of global carbon dioxide emissions can be attributed to IT systems. Green (or sustainable) computing refers to supporting business critical computing needs with the least possible amount of power. This phenomenon changes the priorities in the design of new software systems and in the way companies handle existing ones. In this paper, we present the results of a research project aimed to develop a migration strategy to give an existing software system a new and more eco-sustainable lease of life. We applied a strategy for migrating a subject system that performs intensive and massive computation to a target architecture based on a Graphics Processing Unit (GPU). We validated our solution on a system for path finding robot simulations. An analysis on execution time and energy consumption indicated that: (i) the execution time of the migrated system is less than the execution time of the original system; and (ii) the migrated system reduces energy waste, so suggesting that it is more eco-sustainable than its original version. Our findings improve the body of knowledge on the effect of using the GPU in green computing. © 2015 World Scientific Publishing Company.File | Dimensione | Formato | |
---|---|---|---|
ws-ijseke.pdf
accesso aperto
Descrizione: Camera Ready della versione finale.
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.