
July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

On the Effect of Exploiting GPUs for a More

Eco-sustainable Lease of Life

Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese

Università degli Studi della Basilicata

Dipartimento di Matematica, Informatica ed Economia

Potenza, 85100, Italy
giuseppe.scanniello@unibas.it, ugo.erra@unibas.it, giuseppe.caggianese@unibas.it

http://www2.unibas.it/gscanniello,www.unibas.it/erra

Camine Gravino

Università degli Studi di Salerno

Dipartimento di Studi e Ricerche Aziendali

Fisciano(SA), 84084 , Italy
gravino@unisa.it

http://http : //www.unisa.it/docenti/gravino/index

Received (12 Nov 2013)

Revised (20 Feb 2014)
Accepted (15 Jul 2014)

It has been estimated that about 2% of global carbon dioxide emissions can be

attributed to IT systems. Green (or sustainable) computing refers to supporting business
critical computing needs with the least possible amount of power. This phenomenon

changes the priorities in the design of new software systems and in the way companies
handle existing ones. In this paper, we present the results of a research project aimed
to develop a migration strategy to give an existing software system a new and more

eco-sustainable lease of life. We applied a strategy for migrating a subject system that

performs intensive and massive computation to a target architecture based on a Graphics
Processing Unit (GPU). We validated our solution on a system for path finding robot

simulations. An analysis on execution time and energy consumption indicated that: (i)
the execution time of the migrated system is less than the execution time of the original

system; and (ii) the migrated system reduces energy waste, so suggesting that it is more

eco-sustainable than its original version. Our findings improve the body of knowledge on
the effect of using the GPU in green computing.

Keywords: Green Computing; Greening; GPU; Path Finding Robot Simulation; Migra-

tion.

1. Introduction

There are many views on the evolution of software systems and the development

process. Basili and Musa classified this evolution into the following eras: functional,

planning, cost, and quality [1]. The functional era concerns the 1960’s. The main

goal of the development process was to produce software able to meet the functional

1

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

2 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

requirements of both public institutions and industry. With this goal in mind, special

development processes were defined in the functional era. The 1970’s constitutes

the planning era. The goal was to propose development processes that promoted

software development in a planned, scheduled, and controlled manner. The notion

of the software life cycle and the identification of phases and tasks that characterize

them were introduced in the planning era. The 1980’s is considered the cost era. At

that time, the goal of reducing software development and evolution costs was seen

as fundamental. Cost and effort estimation models and validation methods were

introduced to address this problem. Quality played the leading role in the 1990’s

(referred to as the quality era). Software engineers started to quantify the quality

of software systems in this era.

The last decade has seen the start of a new era thanks to the spread of the Word

Wide Web. This era could be called the global era. The main goal was to design

and develop distributed software systems (e.g., web-based or service oriented) using

distributed development models [2].

In recent years, the power consumption of servers, data centers, and electronic

devices has become a major concern [3]. For example, the power consumption of

businesses in the USA doubled between 2000 and 2006 [4]. In order to tackle this

problem and in the context of an increasing desire for eco-sustainable development,

a new era is being born that could be called the “green era”. Its relevance is widely

recognized in information technology as shown by the existence of new conferences

and workshops (e.g., IEEE/ACM GreenCom, HotPower, and GreenS).

Very often in the past, the shift from one era to another has resulted in adapting,

porting, migrating, and re-engineering existing software systems to adapt them to

new business needs [5, 6]. Then, it is easy to imagine that in the next few years

an increasing interest in green technology could be manifested in the definition of

methods, techniques, and tools which will offer to the existing systems a new lease

of life to satisfy the desire for energy reduction and environmental sustainability.

In this paper, we outline the results of a research project aimed to develop

a migration strategy to make more eco-sustainable existing software systems. We

have applied here a strategy and a process to migrate a subject system, performing

intensive and massive computation, to a target environment based on a Graphics

Processing Unita (GPU). We validated our solution migrating a system for multi-

robot path finding simulations developed at the University of Basilicata within the

research project mentioned above. The migrated system (from here on, greened sys-

tem on the basis of our empirical evaluation) has been compared with the original

one with respect to energy consumption and execution time. We used an energy

logger tool to get the magnitude of the alternating current needed for the execution

of both systems. We considered both execution time and energy consumption be-

aThey are graphics chips that provide fine-grained and coarse-grained data and task parallelism.
Modern GPUs are designed as computational accelerators or companion processors optimized for

scientific and technical computing applications (e.g., [7]).

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 3

cause of the nature of the GPU. In fact, a possible reduction in execution time could

not lead to a reduction of energy consumption (e.g., [8, 9]). Based on the experi-

ence gained in our study, we have also outlined possible implications for our research

from both the practitioner and the researcher perspectives and some lessons learned

for dealing with existing software in the context of energy reduction when using a

target architecture based on the GPU.

The work presented in this paper is built on that presented in [10]. Our new

main contributions can be summarized as follows:

• The strategy and the process have been better described.

• A deeper and more comprehensive discussion of related work and back-

ground has been added.

• The experimental part has been completely re-designed and re-executed.

For example, a more accurate energy logger tool has been used to measure

energy consumption.

• Implications from the researcher and the practitioner perspectives have

been presented here for the first time. Also, lesson learned is new in this

paper.

The remainder of the paper is organized as follows: In Section 2, we present

motivation, background, and related work. In Section 3, we discuss possible benefits

and issues in the application of a greening process to give existing software a more

eco-sustainable lease of life. In this section, we also introduce our migration strategy

and process. In Section 4, we report the design of our empirical evaluation. In

Section 5, we present and discuss the obtained results and their implications from

the researcher and the practitioner perspectives. In Section 6, final remarks, lesson

learned, and future direction for our research are highlighted.

2. Motivation, Background, and Related Work

2.1. Ecological Life Cycle and Greening

Murugesan [11] proposes a holistic approach to fully and effectively address the

impact of computers on the environment. This approach is focused on the entire

software life cycle and addresses the problem of environmental sustainability using

the following four steps:

Green Use. Reducing the energy consumption of computers and other information

systems and using them in an environmentally sound manner;

Green Disposal. Reusing, refurbishing, and recycling electronic devices (e.g., per-

sonal computers and laptops);

Green Design. Designing energy-efficient computers, servers, cooling devices, and

data centers with low environmental impact;

Green Manufacturing. Building electronic components, computers, and other

hardware devices with low environmental impact.

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

4 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

Although the sustainability issue is important and socially relevant, the costs

and risks engendered by the replacement of a software system which has evolved

over the years through the input of significant economic and human resources cannot

be met by the software companies themselves. These companies are not motivated

to develop software systems for hardware architectures with a potential low envi-

ronmental impact, for example, integrated GPUs or cloud computingb. Therefore,

the most reasonable solution for these companies could be the migration of their

systems to a more eco-sustainable hardware architecture.

In this way, the eco-sustainable development of software would have a greater

impact in building a society and economy of green software. In addition, companies

would benefit from an economic return due not only to save energy, but also to green

disposal and manufacturing. Therefore, it is evident that a new step has to be added

to those proposed by Murugesan [11]. We propose here the step: Green Software

Development. This step concerns sustainability and energy efficiency into all the

phases of the software lifecycle. For the software maintenance, the main goal is the

migration (or greening) of existing software systems to reduce energy consumption

and improve sustainability. Greening will also preserve past investments and all the

costs related to the development and the past maintenance operations performed.

2.2. Total Cost of Ownership

In the TCO (Total Cost of Ownership), the energy consumption is a financial esti-

mate for direct and indirect costs of a product or system. Today, TCO is considered

a dominant factor also for software systems (e.g., [13]). It also includes additional

costs such as the cooling infrastructure and provisioning. Energy reduction repre-

sents one of the main drivers toward environmental sustainability (see for example

the case of the Google data center in Alaska). To a first approximation [14], both

cooling and provisioning costs are proportional to the average energy consumed,

therefore improvements in energy efficiency should reduce all related costs.

2.3. Save Energy Today

In 1992 Energy Starc, a voluntary labeling program, was launched by the U.S.

Environmental Protection Agency. This program was designed to promote and rec-

ognize energy-efficiency in monitors, climate control equipment, and other electronic

devices. Since the launch of this program, academia and industry have shown an

increasing interest in the design and development of eco-sustainable systems, and

then the term “green computing” has been coined.

Today, this phenomenon is very prevalent in the database community, where

the focus is on how traditional query processing and optimization techniques can

bCloud computing is a new paradigm in which computing resources such as processing, memory,
and storage are not physically present at the user’s location [12]. Instead, a service provider owns

and manages these resources, and users access them via the Internet.
chttp://www.energystar.gov/

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 5

be extended to contexts where energy consumption is a key issue. Therefore, this

community is concentrating its efforts on two relevant areas: hardware and software.

The most appropriate hardware differs substantially depending on whether raw

performance or energy efficiency is the primary goal. For example, Rivoire et al. [8]

propose a first benchmark for energy-aware database systems. The literature also

provides examples and results on the use of flash memory to extend RAM (Random

Access Memory) or to extend/replace disk storage [15]. As for software, one trend

consists in the implementation of query optimizers that compare alternatives based

on energy consumption, and that manage the allocation of data structures according

to energy consumption [16]. Another approach is proposed by Govindaraju et al. [17]

who propose an implementation of various common database operations on the

GPU, thus continuing the trend of the last few years, which has seen more and

more computational power given to desktop PCs through the GPUs.

Modern GPUs are not only powerful graphics engines, but also a highly-

parallel programmable processor featuring peak arithmetic and memory bandwidth

that outpaces its CPU counterpart. For example, Rofouei et al. [18] performed a

study into the power and energy cost of the GPU operations and carried out a

cost/performance comparison with a CPU-only system. The results indicated that

GPU-based systems reduce energy consumption if the performance gain is above

a certain limit. That is, reducing execution time does not mean reducing energy

consumption. The results obtained by [18] are consistent with those we achieved in

the study presented in this paper. The most substantial difference with respect to

our proposal is that we introduce here a migration strategy and analyzed the data

gathered from the execution of both the existing system and migrated one.

Energy reduction is also becoming relevant in servers, cloud computing, and

embedded systems [14, 19]. This phenomenon is called energy-proportional design.

It is aimed to save energy and potentially double server efficiency in real-life use.

Barroso and Hölzle [14] state that achieving energy proportionality will require

significant improvements in the energy usage profile of every system component.

This is particularly true for memory and disk components. Cloud computing can

also be used to save energy. For example, computation offloading and virtualization

could save energy for mobile applications [19]. However, cloud computing does not

represent the panacea for eco-sustainability [20].

2.4. Dealing with Existing Software Systems

Software migration is the process of moving a given software from one operating en-

vironment (hardware and/or software) to another operating environment (i.e., the

target environment), while retaining the original system data and functionality [21].

Migration as intended here does not mean installing a given system onto an hard-

ware operating environment that has been implemented using low-power techniques

(e.g., multiple voltage planes, clock gating, or dynamic voltage-frequency scaling).

In fact, in such scenario the characteristics of the original system are not taken into

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

6 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

consideration and so all the chances to improve its sustainability are somewhat not

evaluated.

Migration is very relevant in software maintenance [22]. In fact, during the past

two decades several migration approaches have been presented [23–28]. Some of

them have been proposed to convert the data of a legacy database and to en-

able the communication between the existing source code and the newly developed

database (e.g., [27,28]). Other approaches migrate existing software systems to dis-

tributed architectures such as client-server [29], distributed objects [30], web-based,

and service-oriented (SOA) [5]. Whatever the approach, reverse engineering and

reengineering methods are needed. Furthermore, due to the risk involved in migra-

tion projects [5,29,31] the greater part of these approaches are incremental [22] and

decompose legacy systems into smaller chunks that can be then: (i) encapsulated;

(ii) reengineered; or (iii) redeveloped. All these approaches have not been conceived

to deal with issues related to the energy consumption.

Encapsulation is the least costly and risky alternative because needs a minimum

number of changes [32]. Encapsulated components can be batch programs, online

transactions, programs, or even just simple blocks of code [29]. The provided func-

tionality is accessed thorough a wrapper that implements the interface that the

newly developed source code uses to access existing and encapsulated components.

Therefore, wrappers are responsible for passing input parameters to the encapsu-

lated component, capturing the output data, and returning them to the requester.

Different wrapping approaches have been presented in the literature, which dif-

fer in the technology they use to encapsulate source code at different granularity

levels (e.g., [33–35]). Differently from the migration strategies and approaches pro-

posed in the past [22], encapsulation can be marginally applied in the migration

of a given system to a low consumption target environment. In this context, en-

capsulation has to be rethought. In fact, the most reasonable approach to reduce

energy waste seems to recover individual software components and identify those

that can be reengineered or redeveloped and successively encapsulated. Similarly to

the approaches proposed in the literature (e.g., [29,33]), incremental strategies seem

the best solution to deal with existing systems and to preserve past investments.

2.5. Related Work

Eco-sustainability is new for software engineering (e.g., GreenS [3], one of the most

specific workshops on green software engineering, is at its second edition [36]). For

example, Sahin et al. [37] present a preliminary empirical study that investigates the

impacts on energy usage of applying design patterns. The results of the data analy-

sis indicate three main findings: (i) applying design patterns can both increase and

decrease the amount of energy consumed by a system; (ii) design patterns within

a category do not impact energy usage in similar fashion; (iii) it is improbable

that energy usage can be estimated by only taking into consideration design level

artifacts; and (iv) most research exploring the relationship between software design

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 7

and power consumption is speculative rather than based on empirical evidence.

According to these results, it seems relevant to define approaches for the recovery

of “energy wasting” software components both at coarse-grained and fine-grained

level. A first step in that direction could consist in adapting existing approaches for

the recovery of software architecture [38, 39] and prototypical micro-architectures

(i.e., design patter instances) [40]. These research topics are longstanding and rel-

evant in the software engineering. For example, Adritsos and Tzerpos [38] present

LIMBO, a hierarchical algorithm for software clustering. The clustering algorithm

considers both structural and non structural attributes to reduce the complexity

of a software system by decomposing it into clusters. More recently, Scanniello et

al. [39] propose an approach to recover the implemented architecture of a software

system with a hierarchical structure. The approach is based on the combination

of structural and lexical information. The structural dimension is used to decom-

pose a software system into layers, while the lexical dimension to partition each

layer into components. As far as the recovery of design patter instances, De Lucia

et al. [40] present an approach for recovering instances of structural design pat-

terns from object-oriented source code. Design pattern instances are recovered at

a coarse-grained level and then candidate instances are validated by a fine-grained

source code analysis phase. Several approaches for architecture recovery (based on

static and/or dynamic analyses) have been proposed in the literature [41, 42], but

till now, none has pursued eco-sustainable goals.

3. Migration

3.1. Benefits

In the past, the shift from one era (see Section 1) to the next one, together with

methodological and/or technological innovations, resulted in the need to migrate

software systems [6]. Therefore, it is reasonable to assume that there will be increas-

ing interest from academia and industry in defining methods, techniques, and tools

to migrate software systems that help to promote the construction of a sustainable

economy. The definition of these new technologies may offer the following bene-

fits: (i) preserving the value of past investments; (ii) reviewing marketed systems;

(iii) meeting the new needs of the software market; (iv) reducing energy wastage

and possibly increasing the performance of new systems; and (v) promoting a new

business engine for IT companies.

3.2. Issues

The key issues of migration are managerial and technical. Management issues may

include: alignment with customer priorities, staffing, and estimating costs. Technical

issues may be related to a limited understanding of the system, impact analysis,

testing, and identification of the target environment. In a real migration project a

trade-off is very often made between management and technical issues [5]. In the

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

8 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

following discussion, we focus on the points that seem most interesting to green

existing software systems.

3.2.1. Management Issues

The transfer of innovative technologies and tools to practitioners has long been

investigated in IT [43]. Technology transfer benefits from empirical studies that

show advantages deriving from the application of new technologies [44, 45]. For

example, the adoption of methods, techniques, and tools could be promoted through

experimentations to estimate the effort and the cost for migrating a software system

to a target environment [46]. New approaches are also needed to estimate electrical

energy consumption for migrated systems. These could be used to verify the energy

saving in the case where the migrated system will be developed and used.

3.2.2. Technological Issues

An important role in the migration of software systems is played by reverse engi-

neering and approaches for program comprehension. The maintenance community

classifies these approaches as static and dynamic depending on the kind of analysis

they perform. Static approaches analyze source code without executing it, while the

source code is executed in the case of dynamic approaches [41]. Static and dynamic

analysis approaches could be integrated (e.g., [47]), so obtaining hybrid approaches.

Static analysis may be used to recover object architectures [48] and design pat-

terns [40] thus decomposing the original systems into loosely coupled subsystems.

Each subsystem could then be migrated to an hardware component corresponding

to the service it implements and possibly adapted to this hardware. In this scenario,

computation and data management could be distributed across computers, servers,

cooling devices, and data centers with low environmental impact. Modern comput-

ing paradigms (e.g., cloud computing and service oriented architectures) could be

adopted. Approaches have also been defined to statically locate concepts and fea-

tures in source code [49]. These approaches could be exploited to identify classes

which can be replaced by components that implement similar features, but are more

energy-efficient. Dynamic approaches could be used, for example, to recover the dy-

namic behavior of software systems [50]. The invocation of methods or procedures

may be useful in understanding which parts of the system can be migrated to a

more eco-sustainable target environment. For example, if a part of the source code

performs intensive computation, this is a candidate for migration.

Finally, one of the most challenging technological issues for software migration

is the testing of the migrated system. Passing from a source operating environment

to a target environment mainly produces a new software and then new bugs could

be introduced by maintainers. A possible solution could consist in performing re-

gression testing, where test cases could be derived from the original system and

then used to exercise the migrated system [5].

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 9

3.3. The Used Migration Strategy

We adopted here the generic migration strategy proposed by De Lucia et al. [5].

This strategy is composed of the following steps:

(1) Assessing the Current System. The first step to migrate a subject software

system is to assess it from both the technical and management perspectives.

All the available documentation and resources (e.g., use cases, source code, fault

history, operational profile, and developers’ knowledge) should be used.

(2) Defining the Target Environment. The target environment has to be chosen so

that it faces with the migration needs.

(3) Identifying Problems and Risks. Changing a running system is always associated

with risks. The possible migration problems and risks have to be identified and

assessed in order to delineate possible alternatives to be undertaken in case a

problem happens. Some problems/risks may be managed, while others may lead

to the failure of a migration project.

Our current system (or subject system from her on) regards a massive robot

simulation in the path planning of thousand of robots with respect to obstacles

in any two dimensional environments. The system enables to identify all poten-

tial obstacles to find a suitable path for all robots given a set of start positions.

This system has been developed at the University of Basilicata within a research

project conducted in cooperation between the Department of Computer Science

and the Department of Engineering and Environmental Physic. The objective of

this project was to develop a simulation system to identify difficulties facing mobile

robot navigation in several application scenarios, such as instance manufacturing,

mining, military operations, search and rescue missions, and so on.

We decided to renew this system because additional regional funds were received

to follow these goals: (i) increasing parallelization, (ii) improving performances, and

(iii) reducing energy waste.

In the following subsections, we discuss how each step of the migration strategy

proposed by De Lucia et al. [5] has been instantiated in our research.

3.3.1. Assessing the Current System

Since the documentation was incomplete, we analyzed the source code (static analy-

sis) and the system execution behavior (dynamic analysis) and exploited the knowl-

edge of the developers who implemented some of the software component of the

system. We began with a face-to-face meeting were the system and the goal of

the original project were informally presented and discussed. This phase was im-

portant to share knowledge among the original developers and the researchers and

to discuss possible technical and management project issues. After this meeting,

we established a communication channel with the original developers by means of

instant messaging tools and e-mails.

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

10 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

To analyze the source code of the original system, we used some of the static anal-

ysis tool prototypes developed at University of Basilicata and others were adapted

to handle the problem at the hand (e.g., [51, 52]). When possible general purpose

commercial and open source tools we employed, such as Enterprise Architect and

Borland Together.

The assessment of the system revealed that it had a good level of decomposabil-

ity. For example, the C++ files implementing the presentation logic was separated

from those implementing the application logic and data access layer. The dynamic

analysis also showed that some of the components performed computationally in-

tensive tasks. We performed a manual analysis on these components. This analysis

revealed the massive usage of concurrent threads, so making these components suit-

able to be migrated or reengineered to meet the project requirements.

3.3.2. Defining the Target Environment

In the context of our research, the target environment should give improvement in

term of energy efficiency and computational performances. Due to the results of past

studies (e.g., [18,53]), our implementation relies upon the computational capability

of a modern Graphics Processing Unit (GPU). In fact, with the advent of compute-

capable integrated GPUs having a power consumption of tens of Watts, it is possible

to save energy and outperform the CPUs of a multi-core system. In particular, we

adopt NVIDIA’s GPU architecture with its CUDA parallel programming model.

Modern NVIDIA GPUs are fully programmable multi-core chips known as

CUDA processors [54]. In a GPU, a streaming multiprocessor (SMX) is a clus-

ter of streaming core processors. Each core can only execute one thread at a time,

but when a thread performs an operation with high latency it is put into a waiting

state and another thread executes. This feature, and the application of a scheduling

policy means that the core can run many threads at the same time. In the genera-

tion of GPUs (codenamed Fermi), the number of SMXs ranges from 1 to 16. The

GPU used in our experiments (GF100) consisted of 15 SMXs, each containing 32

single-precision CUDA cores. Because each SMX is capable of supporting up to 1536

threads, this GPU manages up to 23048 resident threads. All thread management,

including creation, scheduling and barrier synchronization is performed entirely in

hardware by the SMX with virtually zero overheads.

In terms of the software model, CUDA C [55] (or simply CUDA) provides soft-

ware developers with facilities to execute parallel programs on the GPU (Figure 1).

To use CUDA, a programmer needs to write their code as special functions called

kernels, which are executed across a set of parallel threads. The programmer or-

ganizes these threads into a hierarchy of blocks and grids. A thread block is a set

of concurrent threads that can cooperate via shared memory (which has a latency

similar to that of registers) and can be coordinated using synchronization mecha-

nisms. A thread grid is a set of thread blocks executed independently. All threads

have access to the same global memory space. Each thread block is mapped to an

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 11

thread

thread block

per!thread local memory

per!block
shared
memory

thread block

y

grid 0

global
memorygrid 1 memory

Fig. 1. Levels of parallel granularity and memory sharing on the GPU.

SMX and executes concurrently. SMX resources (registers and shared memory) are

split across the mapped thread block. As a consequence, this limits the number of

thread blocks that can be mapped onto one SMX.

The programming model of the CUDA language presents a number of similarities

with the C programming language. This aspect may have practical implications.

Beyond the programming model that is based on parallel programming which is

completely different from sequential programming, a company could have developers

with C knowledge to be easily skilled on CUDA. In this programming model, the

CPU is called host and the GPU is called device. A CUDA program consists of

several phases that are executed on either the host or a device. Host code exhibits

little or no data parallelism while the device code exhibits rich amount of parallelism.

The developer supplies a single source code encompassing both host and device

code. The NVIDIA C Compiler separates the two. The host code is straight ANSI

C code and is compiled with host standard C compilers and runs as an ordinary

process. The device code is written in ANSI C extended with keywords for labeling

data-parallel functions, namely the kernels. The CUDA threads are of much lighter

weight than the CPU threads and they take very few clock cycles because they

are scheduled in hardware with virtually no overhead. Differently, the CPU threads

that typically take thousands of clock cycles to generate and schedule threads. The

programmer develops the kernel and chooses when the execution is moved to a

device and how many threads have to be generated.

3.3.3. Identifying Problems and Risks

The most important risk was concerned to the real improvement in term of en-

ergy efficiency and computational performances. For example, it could be possible

that the migrated system does not meet the expected migration goals, namely the

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

12 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

migrated system is not more energy efficient than its original version.

Other issues could be related to the limited understanding of the system, im-

pact analysis, and testing. To deal with the limited understanding of the system, we

performed a meeting and established a communication channel with the original de-

velopers. Special conceived and general purpose tools were also used to comprehend

the original system.

The complexity of the GPU architecture represents another risk for the mi-

gration. In this context, coding needs in-depth knowledge of resources available in

terms of thread and memory hierarchy. Although approaches have been proposed

to deal with migration risks (e.g., [45]), there is a lack of approaches in the greening

context and regarding the estimation of the energy efficiency. In particular, formal

and hybrid methods are not available due to the unavailability of historical data.

Therefore, only expert opinion based methods can be applied. To deal with the

migration risks of our project, we exploited our experience in software maintenance

and parallel computing.

3.4. The Adopted Migration Process

According to the shown migration strategy, our migration process is based on the

following phases:

(1) Reverse Engineering. In this phase suitable models of the subject system are

produced. This phase has also the effect of increasing the comprehension of that

system and its source code.

(2) Reengineering. Components that perform computation intensive tasks are iden-

tified and reengineered. The goal of this kind of step is mostly new in migration.

(3) Integration. The newly developed components are wrapped and integrated.

(4) Testing. The greened system is tested.

Details on these steps are provided in the following subsections.

3.4.1. Reverse Engineering

Reverse engineering tools are used to comprehend the system to be migrated and

to reconstruct its architectural view. In particular, we used the CodeTrees environ-

ment [51] to ease the overall comprehension of the medium-sized software system

(14,472 total lines of code, 1,076 comment lines, and 58 source files) to be greened.

3.4.2. Reengineering

The components that performed intensive computation were identified. We planned

to incrementally migrate the system to reduce the failure risk. A prioritization of

the components to be migrated was defined on the basis of the information gained

in the Reverse Engineering phases. The knowledge of the original developer involved

in the project should be also taken into consideration.

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 13

We focus here on the component that has been recognized as the most risky to

be migrated. That is, the component implementing the A* search algorithm [56,57].

The input of this algorithm is: a set of pairs start - goal positions one for each robot

and a grid map for the search space representation. For each position s, a heuristic

h[s] is used to estimate the goal distance, which is the cost of a minimal path from

the position s to a goal state. Classical heuristics are based on Manhattan, diagonal,

or Euclidean distance calculations. During its execution, A* maintains two values,

g[s] and f [s]. The value g[s] is the smallest cost of any discovered path from a start

position sstart to position s. The value f [s] = g[s] + h[s] estimates the distance

from sstart to the goal position via s. At each iteration, A* expands the states from

which all adjacent states have been explored and tries to update the g-value of each

visited state with a lower value. At the end, the g-value of each visited position s

will be the distance from the start position sstart to position s. The main drawback

of this algorithm is the computation time. This makes the algorithm unsuitable for

massive robots path planning in large state spaces where the simulation must be

performed in real-time. A possible solution to deal with this issue is to use a multi-

core CPU. Since the CPUs have a limited number of cores this approach offers

a partial solution when the number of robots increases. Conversely, GPUs offer

the execution of many number of threads enabling to perform concurrently much

more A* searches. To reengineer software components, we used here the CUDA 4.0

programming language.

3.4.3. Integration

In the GPU parallel path finding, a robot is a CUDA thread. Before beginning the

computation, the input data have to be copied from the CPU (host) to the GPU

(device). The input is a grid map that represents the search space and includes the

start and goal positions of each robot in the simulation. In our case, the kernels are

four. One kernel is in a charge of executing the A* algorithm. Other two kernels are

for the initializations needed for the algorithm execution. The latter kernel concerns

the output to be visualized in the graphical user interface of the new system.

For each kernel an execution configuration has to be specified as well. This

configuration includes the number of threads in a block and the number of blocks in

a grid. Then, the GPU in parallel executes the threads of each kernel. Kernels could

be executed in sequence or in parallel. In our solution, we executed the kernels in

sequential fashion due to the nature of the problem: the output of the A* algorithm

is available only when its execution is concluded.

When the execution is concluded, the output is moved from the GPU to the

CPU. For each robot the output consists in a path that is built backward from

the goal node to the start node. The output is then visualized in the graphical

user interface. Figure 2 shows a screenshot of that system. The dots represent the

start and goal positions of the robots and their line paths. Since the graphical user

interface is the same for both the original system and greened one, the end-user

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

14 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

should not perceive any difference except for the fact that the new greened system

is faster as we experimentally observed.

Fig. 2. A screenshot of the system.

Figure 3 shows an excerpt of the source code for invoking the implementation for

the GPU of the A* algorithm. The statements from 2 to 5 are in charge of allocating

the memory for the CPU, while those from 8 to 15 allocate the GPU memory. The

copy from the CPU memory to the GPU memory is executed by the statements

from 18 to 20. The statements from 23 to 32 are used for the starting configuration.

The four kernels are invoked in the statements from 35 to 38. In particular, the A*

algorithm implementation is invoked in the statement 36. Finally, the statement 41

deals with the moving of the execution output from the GPU to the CPU.

3.4.4. Testing

The software engineer performs testing to verify the introduction of new bugs in

the greened system. In particular, regression testing has been executed using test

cases derived from the original system. Test cases included: input and output. To

identify possible differences in the behavior, the input has been used to exercise

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 15

 1. //CPU memory allocation
 2. int *h_map = (int *) calloc(map_width * map_height, sizeof(int));
 3. int *h_start = (int *) calloc(robot_number, sizeof(int));
 4. int *h_goal = (int *) calloc(robot_number, sizeof(int));
 5. int *h_path = (int *) calloc(robot_number * map_width, sizeof(int));
 6.
 7. //GPU memory allocation
 8. int *d_map, *d_path, *d_start, *d_goal;
 9. size_t size_map = map_width * map_height * sizeof(int);
10. size_t size_robot = robot_number * sizeof(int);
11. size_t size_path = robot_number * map_width * sizeof(int);
12. cudaMalloc((void**)&d_map, size_map);
13. cudaMalloc((void**)&d_start, size_robot);
14. cudaMalloc((void**)&d_goal, size_robot);
15. cudaMalloc((void**)&d_path, size_path);
16.
17. //Copy data from the CPU to the GPU
18. cudaMemcpy(d_map, h_map, size_map, cudaMemcpyHostToDevice);
19. cudaMemcpy(d_start, h_start, size_robot, cudaMemcpyHostToDevice);
20. cudaMemcpy(d_goal, h_goal, size_robot, cudaMemcpyHostToDevice);
21.
22. //Execution configuration
23. int threadForBlock = 128;
24. int block_x = threadForBlock;
25. int block_y = 1;
26. int block_z = 1;
27. int grid_x = 1;
28. int grid_y = 1;
29. block_x = threadForBlock;
30. grid_x = (robot_number + (threadForBlock - 1)) / threadForBlock;
31. dim3 dimBlock(block_x, block_y, block_z);
32. dim3 dimGrid(grid_x, grid_y, 1);
33.
34. //Kernels invokation
35. initialize_gpu_memory<<<dimGrid, dimBlock>>>();
36. initialize_a_star<<<dimGrid, dimBlock>>>();
37. a_star_algorithm<<<dimGrid, dimBlock>>>();
38. build_paths<<<dimGrid, dimBlock>>>();
39.
40. //Copy output from the GPU to the CPU
41. cudaMemcpy(h_path, d_path, size_path, cudaMemcpyDeviceToHost);

Fig. 3. Source code to invoke the greened component.

the greened system and the output is compared with output of the new system.

Currently, we do not provide any specific support to derive test cases and perform

regression testing. This point is subject of future work.

4. Design of the Experiment

The main goal of our experiment is to evaluate possible benefits deriving from the

application of the proposed migration strategy on the considered system in term of

execution time and the possible reduction of energy consumption. To this end, we

compare the original system and the migrated one with respect to these criteria. We

considered both execution time and energy reduction because they are not directly

related as we introduced in Section 2.3 and as we will discuss in Section 5.2.

In this section, we present the design of our experiment following the guidelines

proposed by Wohlin et al. [58]. For replication purposes, the experimental package

and the raw data are available on the webd. The executable files of both the original

and the greened systems are also available for downloading.

dwww2.unibas.it/gscanniello/Greening/

http://www2.unibas.it/gscanniello/Greening/

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

16 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

4.1. Definition

The original and the greened systems were executed on the same input to under-

stand whether or not differences in terms of execution time and energy consumption

were present. In this context, the baseline was the original version of the system.

To ensure that important aspects were defined before the planning and the

execution of the experiment took place [58], we used the GQM (Goal Question

Metric) template [59]. According to that template, the goal of our experimentation

can be defined as follows:

Analyze the greened system for the purpose of comparing it with the original

one with respect to execution time and energy consumption from the point of

view of the maintainer in the context of the massive robot simulation in the path

planning, and from the point of view of the researcher in the context of the

validation of the proposed migration strategy and process.

We have then defined and investigated the following two research questions:

RQ1 Does the greened system outperform the original system in terms of execution

time?

RQ2 Is the energy consumption of the greened system lower than that of the

original one?

4.2. Context

The comparison was performed over a number of different input configurations on

two grid maps of 128 × 128 and 256 × 256 tiles. We choose these two kinds of grid

maps on the basis of the actual use of the original system. Grid maps either smaller

than 128 × 128 or larger than 256 × 256 were practically never used.

Each configuration input was constituted of a number of robots and of a number

of obstacles that have to be avoided by these robots. The number of robots were:

5,120, 51,200, 512,000, 5,120,000, and 51,200,000. The number of obstacles for each

row of the grid map was: 0, 5, 10, 15, 20, and 25. The number of robots and obstacles

is a consequence of the chosen dimension for the grid maps. Robots are positioned

on a grid map (more than one robot can be placed on each point on the map) and

obstacles are placed on each row of that map randomly.

To get a deeper understanding of how execution time and energy consumption

vary with respect to the size of a grid map and the number of robots and obstacles,

we have considered all their possible combinations as input configurations. Note

that only these three aspects could be chosen by the user of the original and the

migrated software systems.

4.3. Variable Selection and Design

The main factor of the study is Implementation (the variable we manipulated). It is

a nominal variable with two possible values: CPU and GPU. CPU is referred to the

original system, while GPU to the greened one. We also considered: Map, Robot,

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 17

and Obstacle. Map is the dimension of the grid map, while Robot and Obstacle are

the numbers of robots and obstacles, respectively. In our experiment, these variables

are ordinal and their levels are those we report in Section 4.2.

According to the defined null hypotheses, we selected and used the following

dependent variables:

• Time. It indicates the computation time and it is measured in seconds.

• Consumption. It indicates the total energy consumption measured in Joule.

We considered and analyzed 60 samples (or units) in terms of Time and Con-

sumption with respect the original and greened systems. In other words, the two

implementations are applied to each of 60 samples and the pair of treatments are

applied to the same samples.

4.4. Preparation and Execution

The empirical evaluation was performed on a PC equipped with an Intel Core 2

Duo E7400 2.80Ghz processor, a NVIDIA Fermi GTX 480 1.5GB video card, and

Windows 7 as the operating system.

To get the execution time of the original and the greened systems on each config-

uration input, we instrumented source code. To measure the Joules, we used the en-

ergy logger tool Watts up? e. We opted for this logger because it has been successfully

used to measure energy consumption for GPU based implementations (e.g., [60,61]).

The use of an energy logger was needed because there are not accepted metrics to

determine energy usage when dealing with the GPU based implementations. This is

not completely true for those implementations based on CPU (e.g., [37,62]). There-

fore, to conduct a comparison as much as possible fair between the two considered

implementations, we used the energy logger also for the CPU implementation.

It is worth mentioning that the GPU acts as co-processor and then in the total

energy consumption there is also the consumption related to the idle state of the

CPU. We also point out that each test was ran five times. We presented here the

worst results for both the original and greened systems. Note that the results in

terms of computation time and energy consumption among these runs were similar.

4.5. Threats to validity

A threat is related to the energy logger tool used to measure energy consumption.

In fact, the accuracy of the measurements might affect results. However, the use

of the chosen energy logger tool equally affects the measurements for both the

implementations. To increase our awareness in the achieved results, we plan future

replications by exploiting at least one different energy logger tool. Another possible

threat is due to configuration input we used to perform the comparison between

the two different implementations of the system.

ewww.powermeterstore.com/crm uploads/wattsup.pdf

http://www.powermeterstore.com/crm_uploads/wattsup.pdf

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

18 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

The quality of the system implementation might affect the validity of results:

it underwent few maintenance operations. This from one side made the migration

easier and from the other side might reduce the differences from the original system

to the greened one with respect to execution time and energy consumption. Then,

to improve our confidence in the achieved results, our migration process should be

applied on other software systems. This will also allow a better characterization of

which kind of system would benefit more from our solutions.

5. Results

5.1. Descriptive Statistics

Some descriptive statistics (i.e., min, max, mean, median, and standard deviation)

on Time and Consumption are reported in Table 1. These statistics show that the

execution time of the greened system is lower than that of the original one. The

same holds for energy consumption. Another remarkable finding is that the standard

deviation values for Time and Consumption are always lower for the greened system.

In other words, the data points for both Time and Consumption tend to be closer to

their mean values in case of the greened system, thus suggesting that its execution

and energy consumption are more predictable.

Table 1. Descriptive statistics on Time (seconds) and Consumption (Joule)

Variable Implementation Min Max Mean Median De.St.

Time CPU 577 61130000 5979000 202700 13441613

GPU 193 4985000 766700 34610 1526421

Consumption CPU 57 6430000 628000 21610 1408505

GPU 29.8 1066000 159600 6417 321328.1

Figure 4 and Figure 5 show the results achieved in terms of execution time and

energy consumption for all the input configurations considered. As for Time, Figure

4.a shows the results for CPU and GPU achieved on a grid map 128 × 128. On the

top of Figure 4.a, we graphically summarize the results achieved with 5,120, 51,200,

and 512,000 robots, while on the bottom those for 5,120,000 and 51,200,000 robots.

We reported the results in this way because of the magnitude of the differences in the

execution time achieved in the two groups of configuration input. Similarly, Figure

4.b shows the results achieved for a grid map 256 × 256. The energy consumption

results are visually shown in Figure 5.a and Figure 5.b for the grid maps 128× 128

and 256 × 256, respectively.

The execution time of the greened system is always lower than the original one as

Figure 4.a shows. Moreover, the differences in the execution time are more evident

when the number of robots and obstacles increases. Indeed, the number of obstacles

affects the execution time only in the case of the original system.

Figure 5 suggests that the new system has a lower energy consumption with

respect to the original one. This is true for all the input configurations. As for

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 19

0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	

5120	
 robots	
 51200	
 robots	
 512000	
 robots	

CPU	
 577	
 661	
 721	
 1163	
 1624	
 4856	
 5835	
 6686	
 10323	
 17926	
 29268	
 54914	
 60153	
 67475	
 100800	
 173313	
 295721	
 515982	

GPU	
 193	
 198	
 195	
 194	
 195	
 194	
 1959	
 1974	
 1977	
 1969	
 1976	
 1971	
 19332	
 19326	
 19337	
 19337	
 19339	
 19309	

0	

100000	

200000	

300000	

400000	

500000	

600000	

Ti
m
e	

0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	

5120000	
 robots	
 51200000	
 robots	

CPU	
 578698	
 633607	
 960074	
 1635050	
 2815890	
 5368540	
 5799250	
 6501060	
 9522400	
 15761200	
 26621500	
 51823000	

GPU	
 192319	
 192403	
 192431	
 192407	
 192357	
 192435	
 1913310	
 1912920	
 1913530	
 1914260	
 1929480	
 1914200	

0	

10000000	

20000000	

30000000	

40000000	

50000000	

60000000	

Ti
m
e	

(a)

0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	

5120	
 robots	
 51200	
 robots	
 512000	
 robots	

CPU	
 1772	
 2010	
 2172	
 2247	
 7292	
 16693	
 18501	
 19874	
 21529	
 26979	
 76088	
 63738	
 176113	
 195064	
 210345	
 331859	
 766381	
 569899	

GPU	
 500	
 506	
 499	
 506	
 501	
 506	
 5058	
 5044	
 5053	
 5037	
 5034	
 5023	
 49938	
 49950	
 49949	
 49891	
 49881	
 49949	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

800000	

900000	

Ti
m
e	

0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	

5120000	
 robots	
 51200000	
 robots	

CPU	
 1797810	
 1973040	
 2143210	
 3355540	
 6515970	
 5389690	
 17231800	
 19003000	
 20608200	
 34079000	
 61133200	
 53638500	

GPU	
 498511	
 498315	
 498496	
 498680	
 498575	
 498523	
 4985190	
 4984700	
 4980830	
 4983810	
 4978700	
 4984010	

0	

10000000	

20000000	

30000000	

40000000	

50000000	

60000000	

70000000	

Ti
m
e	

(b)

Fig. 4. Graphics for Time (in seconds) (a) 128 × 128 and (b) 256 × 256

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

20 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	

5120	
 robots	
 51200	
 robots	
 512000	
 robots	

CPU	
 57	
 67	
 73	
 127	
 177	
 528	
 614	
 749	
 1112	
 1961	
 3238	
 6025	
 6604	
 7363	
 11100	
 19093	
 32411	
 54911	

GPU	
 33	
 33	
 31	
 30	
 31	
 32	
 401	
 376	
 375	
 387	
 370	
 389	
 3740	
 3736	
 3740	
 3697	
 3750	
 3767	

0	

10000	

20000	

30000	

40000	

50000	

60000	

Jo
ul
e	

0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	

5120000	
 robots	
 51200000	
 robots	

CPU	
 63115	
 66315	
 104083	
 178329	
 307791	
 584926	
 624984	
 698874	
 990698	
 1637921	
 2765731	
 5463970	

GPU	
 37967	
 37971	
 38057	
 38068	
 37822	
 38010	
 389005	
 388826	
 387132	
 386053	
 405559	
 384708	

0	

1000000	

2000000	

3000000	

4000000	

5000000	

6000000	

Jo
ul
e	

(a)

0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	

5120	
 robots	
 51200	
 robots	
 512000	
 robots	

CPU	
 194	
 212	
 238	
 241	
 776	
 1841	
 2042	
 2165	
 2373	
 2931	
 8210	
 6832	
 18858	
 20849	
 22366	
 35634	
 82744	
 60738	

GPU	
 65	
 80	
 80	
 88	
 82	
 86	
 995	
 1026	
 1021	
 968	
 1000	
 982	
 9672	
 9623	
 9654	
 9608	
 9638	
 9725	

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

Jo
ul
e	

0	
 5	
 10	
 15	
 20	
 25	
 0	
 5	
 10	
 15	
 20	
 25	

5120000	
 robots	
 51200000	
 robots	

CPU	
 193076	
 211789	
 229565	
 362884	
 707784	
 580256	
 1773089	
 1967796	
 2126431	
 3628910	
 6430315	
 5567905	

GPU	
 101974	
 102143	
 102051	
 102356	
 100988	
 101850	
 1060669	
 1046252	
 1043212	
 1048882	
 1044656	
 1065934	

0	

1000000	

2000000	

3000000	

4000000	

5000000	

6000000	

7000000	

Jo
ul
e	

(b)

Fig. 5. Graphics for Consumption (in Joule) (a) 128 × 128 and (b) 256 × 256

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 21

Time, the higher the number of robots and obstacles, the greater is the difference

of energy consumption between the two systems. It is worth mentioning that the

experiment design used and the plots shown make statistical analysis unnecessary.

5.2. Discussion

In the migration of a simulation and real-time software the use of the GPUs seems

to make the difference in terms of execution time. The results shown in Figure 4

allow us to positively answer RQ1.

As for energy consumption, the difference between the two systems is not so

clear as for execution time. On the basis of these results, we could not provide

conclusive findings on whether the GPU reduces energy waste in our study. However,

the results shown in Figure 5 allow us to postulate that the greened system is

more eco-sustainable than the original system when the size of the input increases.

Accordingly, we positively answered the research question RQ2 even if such a result

should be interpreted with particular more caution with respect to that we obtained

on execution time.

The results above suggest that somewhat execution time and energy reduction

are not directly related, so confirming the findings in [8,9,18]. Therefore, the results

of our work improve the body of knowledge on the effect of using the GPU in green

computing. This is definitively one of the most important contribution of our study.

Another interesting result is that the number of obstacles on a grid map seems

to have an effect on both execution time and energy consumption. This could be due

to the fact that increasing the number of obstacles, the number of memory accesses

to determine their positions increase. On the other hand, the effect of the number

of robots seems to scarcely affect execution time and energy consumption. These

two findings above hold for both the two grid maps considered here. Practically,

both systems (i.e., original and greened) need more time and consume more energy

to find paths for the robots on maps when the number of obstacles increases. As

shown in Figure 4 and Figure 5, the number of obstacles affects more time and

energy consumption in the case of the original system.

Execution time and energy consumption seem to depend on the combination of

both the kind of implementation and the number of robots on the grid map (see

Figure 4 and Figure 5). In addition, it seems that the number of robots affects more

the execution time and energy consumption of the original system.

5.3. Implications

To judge the implications of our experiment, we adopted a perspective-based ap-

proach [63]. Implications on the application of our migration process and strategy

are also presented here. The reported implications are also founded on qualitative

results gained from the application of our migration process and strategy. We based

our discussion on the practitioner/consultant (simply practitioner in the following)

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

22 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

and researcher perspectives [64]. The main practical implications of our study can

be summarized as follows:

• The greened system yields a reduction of execution time and energy consump-

tion. Very rarely our greened system is comparable with the original one in term

of energy consumption and execution time (i.e., when the number of robot is

low). In all the other cases, the greened system outperforms the original one.

This finding is relevant from the practitioner perspective because he/she could

take into account the possibility of using a GPU to reduce execution time of

existing systems to make them more eco-sustainable.

• Although CUDA presents a number of similarities with the C programming

language, the adoption of our migration strategy and process could require a

radical process change in an interested company. In fact, a deep knowledge of

the GPU architecture is needed to fully exploit its computational power. This is

relevant for the practitioner, who should be specifically trained on such a kind

of architecture. Also, the researcher could be interested in this point conceiving

new approaches and methods to automatically support the phases of our process

and strategy.

• Using our strategy allows focusing only on a part of the entire system to be

migrated. This could potentially reduce the effort and the risk to give legacy

systems a more eco-sustainable lease of life. This is relevant for the practitioner.

From the researcher perspective, it could be interesting to study potential ben-

efits deriving from the application of our strategy.

• Execution time and energy reduction seem to be not directly related. From the

researcher perspective, this point is interesting both in our research context and

in different applicative contexts. Our results pose the basis for future work.

• Our results suggest that execution time and energy consumption are affected

by the kind of input. This result is relevant for the researcher, who could be

interested in studying how to improve the performance of a system and to reduce

its energy consumption as well. That is, if one knows possible issues that affect

energy consumption and execution time, he/she can act to solve them.

• The study is focussed on a desktop application for path finding robot simu-

lations. From the researcher perspective, the effect of using our solutions on

different kinds of applications (e.g., business and web based) represents a pos-

sible future direction.

• The original system has been developed in a research project and underwent

few maintenance operations. The magnitude of the benefits deriving from the

use of our solutions suggests that similar results could be obtained in different

real-time software (e.g., games) developed in different kinds of projects. This is

relevant from both the practitioner and the researcher perspectives.

• Energy consumption in a migration project has been analyzed for the first time

in our study. This could be of interest for the researcher.

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 23

6. Conclusion

The replacement of a legacy system which has evolved during the years through the

input of significant economic and human resources may introduce unmanageable

costs and risks. Software houses are conservative and act only when they are forced

to [65]. Therefore, the most reasonable solution for companies appears to be the

migration of their systems to reduce energy consumption. This satisfies the need to

be technically innovative and at the same time promotes environmental sustainabil-

ity. To make existing software systems more eco-sustainable, there are management

and technical issues to deal with. Possible research directions related to these issues

have been highlighted and discussed in the paper.

In this paper, we have also presented a process to migrate an existing system to

a target environment based on the GPU. We empirically validated our solutions on

a system for massive robot simulations. The migrated system has been compared

with the original one. The experimental results suggested that the greened system

outperforms the original one with respect to execution time. In addition, the energy

consumption of the greened system is lower so resulting more eco-sustainable than

the original system.

6.1. Lesson Learned

Our goal here is to bring together lessons learned that can be useful to researchers

and software practitioners. We gained lesson learned in the application of our mi-

gration process and strategy:

• Whatever is the language to program a GPU (e.g., CUDA), a deep knowledge

of its architecture and of its capabilities is needed to fully exploit the compu-

tational power of this kind of processor.

• To get a significant speed-up of the computation time, the use of the memory

has to be properly managed. In particular, to get peak memory performance,

computation must be structured around sequential memory accesses because

random access to the memory might slowdown computation.

• Moving data between the CPU (host) and the GPU (device) might slowdown

computation time and negatively affect energy consumption. For small sized

data, the overheads of data transfer overshadow improvements (time and con-

sumption). To green existing software systems, the maintainer has to consider

issues related to the data transferring from and to the GPU. Time can be saved

delaying data transfer operations as much as possible. The best is to transfer

data only once.

• The GPU is particularly useful to execute many closely-coupled and indepen-

dent parallel threads: it is based on a single-program multiple-data program-

ming model. The GPU processes many elements in parallel using the same

program and each element is independent from the other elements. Further-

more, the power consumption of a GPU is higher than a multicore CPU. Then,

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

24 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

the greening of an existing software system using GPU is possible only in case

computation can be parallelized.

6.2. Future Work

It would be worth measuring the energy consumption of each part of the target sys-

tem, so having information to be used in the definition of load balancing techniques

to optimize energy consumption. A possible future direction could also consist in the

definition of models to estimate the energy consumption of a migrated system and

the effort and cost due to its migration. This will allow estimating the consumption

and the possible energy reduction of the target system before its actual migration

to the GPU. Estimation models would support the management of a company to

deal with the issue: is it worthwhile to green our existing system? The results of

our research poses the basis in this direction.

References

[1] V. R. Basili and J. D. Musa, “The future engineering of software: A management
perspective,” IEEE Computer, vol. 24, no. 9, pp. 90–96, 1991.

[2] B. Sengupta, S. Chandra, and V. Sinha, “A research agenda for distributed software
development,” in Proc. of International Conference on Software Engineering. ACM
press, 2006, pp. 731–740.

[3] P. Lago, R. Kazman, N. Meyer, M. Morisio, H. A. Müller, F. Paulisch, G. Scan-
niello, B. Penzenstadler, and O. Zimmermann, “Exploring initial challenges for green
software engineering: summary of the first greens workshop, at icse 2012,” ACM
SIGSOFT Software Engineering Notes, vol. 38, no. 1, pp. 31–33, 2013.

[4] S. Rivoire, M. A. Shah, P. Ranganathan, C. Kozyrakis, and J. Meza, “Models and
metrics to enable energy-efficiency optimizations,” IEEE Computer, vol. 40, no. 12,
pp. 39–48, 2007.

[5] A. De Lucia, R. Francese, G. Scanniello, and G. Tortora, “Developing legacy system
migration methods and tools for technology transfer,” Softw., Pract. Exper., vol. 38,
no. 13, pp. 1333–1364, 2008.

[6] H. M. Sneed, “Planning the reengineering of legacy systems,” IEEE Software, vol. 12,
no. 1, pp. 24–34, January 1995.

[7] S. Yoo, M. Harman, and S. Ur, “Highly scalable multi objective test suite minimi-
sation using graphics cards,” in Proc. of International Symposium on Search Based
Software Engineering, ser. Lecture Notes in Computer Science, vol. 6956. Springer,
2011, pp. 219–236.

[8] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis, “Joulesort: a balanced
energy-efficiency benchmark,” in Proc. of ACM SIGMOD international Conference
on Management of Data. ACM press, 2007, pp. 365–376.

[9] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey, “De-
bunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on
CPU and GPU,” SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 451–460, 2010.

[10] G. Scanniello, U. Erra, G. Caggianese, and C. Gravino, “Using the GPU to Green an
Intensive and Massive Computation System,” in Software Maintenance and Reengi-
neering (CSMR), 2013 17th European Conference on, March 2013, pp. 384–387.

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 25

[11] S. Murugesan, “Harnessing green it: Principles and practices,” IT Professional,
vol. 10, no. 1, pp. 24–33, January 2008.

[12] M. Creeger, “CTO roundtable: Cloud computing,” Queue, vol. 7, no. 5, pp. 1:1–1:2,
2009.

[13] J. G. Koomey, “Estimating total power consumption by servers in the U.S. and the
world,” 2007.

[14] L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,” IEEE
Computer, vol. 40, no. 12, pp. 33–37, 2007.

[15] G. Graefe, “The five-minute rule twenty years later, and how flash memory changes
the rules,” in Proc. of International Workshop on Data Management on New Hard-
ware. ACM Press, 2007, pp. 6:1–6:9.

[16] R. Ramamurthy and D. J. Dewitt, “Buffer-pool aware query optimization,” in Proc.
of International Conference on Innovative DataSystems Research, 2005, pp. 250–261.

[17] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, “Fast computa-
tion of database operations using graphics processors,” in Proc. of ACM SIGMOD
International Conference on Management of Data, 2004, pp. 215–226.

[18] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and M. Sarrafzadeh, “Energy-
aware high performance computing with graphic processing units,” in Proc. of Inter-
national Conference on Power Aware Computing and Systems. USENIX Association,
2008, pp. 11–11.

[19] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offloading compu-
tation save energy?” IEEE Computer, vol. 43, no. 4, pp. 51–56, 2010.

[20] E. Davidson, E. Vaast, and P. Wang, “The greening of it: How discourse informs it
sustainability innovation,” in In Proceedings of Conference on Commerce and Enter-
prise Computing. IEEE Computer Society, 2011, pp. 421–427.

[21] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy information systems: Issues
and directions,” IEEE Software, vol. 16, no. 5, pp. 103–111, 1999.

[22] M. L. Brodie and M. Stonebraker, Migrating legacy systems: Gateways, interfaces &
the incremental approach. Morgan Kaufmann Pub; 1 edition, 1995.

[23] G. Antoniol, R. Fiutem, E. Merlo, and P. Tonella, “Application and user interface mi-
gration from Basic to Visual C++,” in Proc. of International Conference on Software
Maintenance. IEEE Computer Society, 1995, pp. 76–85.

[24] M. Ceccato, P. Tonella, and C. Matteotti, “Goto elimination strategies in the migra-
tion of legacy code to java,” in Proc. of European Conference on Software Maintenance
and Reengineering. IEEE press, 2008, pp. 53–62.

[25] J. Henrard, D. Roland, A. Cleve, and J. Hainaut, “An industrial experience report
on legacy data-intensive system migration,” in Proc. of the International Conference
of Software Maintenance. IEEE press, 2007, pp. 473 – 476.

[26] F. Ricca and P. Tonella, “Using clustering to support the migration from static to
dynamic web pages,” in Proc. of International Workshop on Program Comprehension.
IEEE press, 2003, pp. 207–216.

[27] G. Scanniello, A. De Lucia, M. Mennella, and G. Tagliamonte, “An approach and an
eclipse based environment for data migration,” in Proc.of International Conference
of Software Maintenance. IEEE Computer Society, 2008, pp. 237–246.

[28] P. Thiran, J.-L. Hainaut, G.-J. Houben, and D. Benslimane, “Wrapper-based evo-
lution of legacy information systems,” ACM Trans. Softw. Eng. Methodol., vol. 15,
no. 4, pp. 329–359, 2006.

[29] H. M. Sneed, “Encapsulating legacy software for use in client/server systems,” in
Proc. of International Working Conference on Reverse Engineering. IEEE press,
1996, pp. 104–.

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

26 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

[30] J.-M. Lin, Z.-W. Hong, G.-M. Fang, H. C. Jiau, and W. C. Chu, “Reengineering
windows software applications into reusable corba objects,” Information & Software
Technology, vol. 46, no. 6, pp. 403–413, 2004.

[31] L. Aversano, G. Canfora, A. Cimitile, and A. De Lucia, “Migrating legacy systems
to the web: an experience report,” in Proc. of European Conference on Software
Maintenance and Reengineering. IEEE press, 2001, pp. 148–157.

[32] H. M. Sneed, “Risks involved in reengineering projects,” in Proc. of International
Working Conference on Reverse Engineering. IEEE press, 1999, pp. 204–.

[33] A. De Lucia, R. Francese, G. Scanniello, G. Tortora, and N. Vitiello, “A strategy and
an Eclipse based environment for the migration of legacy systems to multi-tier web-
based architectures,” in Proc. of International Conference on Software Maintenance.
IEEE Computer Society, 2006, pp. 438–447.

[34] H. M. Sneed, “Wrapping legacy COBOL programs behind an XML-Interface,” in
Proc. of International Working Conference on Reverse Engineering. IEEE press,
2001, pp. 189–197.

[35] P. Tonella, “Using the O-A diagram to encapsulate dynamic memory access,” in Proc.
of International Conference on Software Maintenance. IEEE Computer Society,
1998, pp. 326–335.

[36] P. Lago, N. Meyer, M. Morisio, H. A. Müller, and G. Scanniello, “2nd international
workshop on green and sustainable software (greens 2013),” in Proc. of the Interna-
tional Conference on Software Engineering. IEEE/ACM, 2013, pp. 1523–1524.

[37] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. E. Kiamilev, L. L. Pollock, and
K. Winbladh, “Initial explorations on design pattern energy usage,” in International
Workshop on Green and Sustainable Software, 2012, pp. 55–61.

[38] P. Andritsos and V. Tzerpos, “Information-theoretic software clustering,” IEEE
Trans. Software Eng., vol. 31, no. 2, pp. 150–165, 2005.

[39] G. Scanniello, A. D’Amico, C. D’Amico, and D. Teodora, “Using the Kleinberg algo-
rithm and Vector Space Model for software system clustering,” in Proc. of Interna-
tional Conference on Program Comprehension. IEEE Computer Society, 2010, pp.
180–189.

[40] A. De Lucia, V. Deufemia, C. Gravino, and M. Risi, “Design pattern recovery through
visual language parsing and source code analysis,” Journ. of Syst. and Softw., vol. 82,
no. 7, pp. 1177–1193, 2009.

[41] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, “A sys-
tematic survey of program comprehension through dynamic analysis,” IEEE Trans.
Software Eng., vol. 35, no. 5, pp. 684–702, 2009.

[42] S. Ducasse and D. Pollet, “Software architecture reconstruction: A process-oriented
taxonomy,” IEEE Trans. Software Eng., vol. 35, no. 4, pp. 573–591, 2009.

[43] S. L. Pfleeger and W. Menezes, “Marketing technology to software practitioners,”
IEEE Software, vol. 17, pp. 27–33, 2000.

[44] M. Colosimo, A. De Lucia, R. Francese, and G. Scanniello, “Assessing legacy system
migration technologies through controlled experiments,” in Proc. of International
Conference of Software Maintenance. IEEE, October 2007.

[45] H. M. Sneed, “A cost model for software maintenance & evolution,” in Proc. of
International Conference on Software Maintenance. IEEE Computer Society, 2004,
pp. 264–273.

[46] M. Colosimo, A. De Lucia, G. Scanniello, and G. Tortora, “Evaluating legacy system
migration technologies through empirical studies,” Information & Software Technol-
ogy, vol. 51, no. 2, pp. 433–447, 2009.

[47] G. A. Di Lucca and M. Di Penta, “Integrating static and dynamic analysis to improve

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

On the Effect of Exploiting GPUs for a More Eco-sustainable Lease of Life 27

the comprehension of existing web applications,” in Proc. of International Workshop
on Web Site Evolution. IEEE press, 2005, pp. 87–94.

[48] J.-F. Girard and R. Koschke, “A comparison of abstract data types and objects
recovery techniques,” Sci. Comput. Program., vol. 36, no. 2-3, pp. 149–181, March
2000.

[49] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev, “Static techniques
for concept location in object-oriented code,” in Proc. of International Workshop on
Program Comprehension. IEEE press, 2005, pp. 33–42.

[50] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse engineering of UML
sequence diagrams for distributed java software,” IEEE Trans. Software Eng., vol. 32,
no. 9, pp. 642–663, 2006.

[51] U. Erra and G. Scanniello, “Towards the Visualization of Software Systems As 3D
Forests: The CodeTrees Environment,” in Proceedings of the 27th Annual ACM Sym-
posium on Applied Computing, ser. SAC ’12. New York, NY, USA: ACM, 2012, pp.
981–988.

[52] G. Scanniello, M. Risi, and G. Tortora, “Architecture recovery using Latent Semantic
Indexing and k-means: An empirical evaluation,” in Proc. of International Conference
on Software Engineering and Formal Methods, 2010, pp. 103–112.

[53] U. Erra, B. Frola, and V. Scarano, “BehaveRT: A GPU-based Library for Au-
tonomous Characters,” in Proceedings of the Third International Conference on Mo-
tion in Games, ser. MIG’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 194–205.

[54] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A Hands-
on Approach, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2012.

[55] NVIDIA Corporation, “NVIDIA CUDA C Programming Guide,” 2010, version 5.5.
[56] P. E. Hart, N. J. Nilsson, and B. Raphael, “Correction to ’A formal basis for the

heuristic determination of minimum cost paths’,” SIGART Bull., no. 37, pp. 28–29,
1972.

[57] U. Erra and G. Caggianese, Real-time Adaptive GPU multi-agent path planning, GPU
Computing Gems Jade Edition ed. Morgan Kaufmann Publishers Inc., 2011, vol. 2,
ch. 22, pp. 295–308.

[58] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén, Experi-
mentation in Software Engineering. Springer, 2012.

[59] V. Basili, G. Caldiera, and D. H. Rombach, The Goal Question Metric Paradigm,
Encyclopedia of Software Engineering. John Wiley and Sons, 1994.

[60] Y. Jiao, H. Lin, P. Balaji, and W. Feng, “Power and performance characterization
of computational kernels on the GPU,” in Proc. of the International Conference on
Green Computing and Communications & International Conference on Cyber, Phys-
ical and Social Computing. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 221–228.

[61] J. M. Cebŕın, G. D. Guerrero, and J. M. Garcia, “Energy efficiency analysis of GPUs,”
in Proc. of the International Parallel and Distributed Processing Symposium Work-
shops & PhD Forum. IEEE Computer Society, 2012, pp. 1014–1022.

[62] S. Gude and P. Lago, “A survey of green it - metrics to express greenness in the it
industry,” VU University Amsterdam, Technical Report, 2010.

[63] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, L. S. Sørumg̊ard,
and M. V. Zelkowitz, “The empirical investigation of perspective-based reading,”
Empirical Software Engineering, vol. 1, no. 2, pp. 133–164, 1996.

[64] B. Kitchenham, H. Al-Khilidar, M. Babar, M. Berry, K. Cox, J. Keung, F. Kurniawati,
M. Staples, H. Zhang, and L. Zhu, “Evaluating guidelines for reporting empirical

July 15, 2014 18:21 WSPC/INSTRUCTION FILE ws-ijseke

28 Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese, Carmine Gravino

software engineering studies,” Empirical Software Engineering, vol. 13, no. 1, pp.
97–121, 2008.

[65] E. Rogers, Diffusion of Innovations, 5th Edition. Free Press, 2003. [Online].
Available: http://books.google.it/books?id=9U1K5LjUOwEC

http://books.google.it/books?id=9U1K5LjUOwEC

	Introduction
	Motivation, Background, and Related Work
	Ecological Life Cycle and Greening
	Total Cost of Ownership
	Save Energy Today
	Dealing with Existing Software Systems
	Related Work

	Migration
	Benefits
	Issues
	Management Issues
	Technological Issues

	The Used Migration Strategy
	Assessing the Current System
	Defining the Target Environment
	Identifying Problems and Risks

	The Adopted Migration Process
	Reverse Engineering
	Reengineering
	Integration
	Testing

	Design of the Experiment
	Definition
	Context
	Variable Selection and Design
	Preparation and Execution
	Threats to validity

	Results
	Descriptive Statistics
	Discussion
	Implications

	Conclusion
	Lesson Learned
	Future Work

