A graph G is pseudo 2-factor isomorphic if the parity of the number of cycles in a 2-factor is the same for all 2-factors of G. In Abreu et al. (2008) [3] we proved that pseudo 2-factor isomorphic k-regular bipartite graphs exist only for k ≤ 3. In this paper we generalize this result for regular graphs which are not necessarily bipartite. We also introduce strongly pseudo 2-factor isomorphic graphs and we prove that pseudo and strongly pseudo 2-factor isomorphic 2k-regular graphs and k-regular digraphs do not exist for k ≥ 4. Moreover, we present constructions of infinite families of regular graphs in these classes. In particular we show that the family of Flower snarks is strongly pseudo 2-factor isomorphic but not 2-factor isomorphic and we conjecture that, together with the Petersen and the Blanuša2 graphs, they are the only cyclically 4-edge-connected snarks for which each 2-factor contains only cycles of odd length.

Pseudo and Strongly Pseudo 2-Factor Isomorphic Regular Graphs and Digraphs

ABREU, Marien;LABBATE, Domenico;
2012-01-01

Abstract

A graph G is pseudo 2-factor isomorphic if the parity of the number of cycles in a 2-factor is the same for all 2-factors of G. In Abreu et al. (2008) [3] we proved that pseudo 2-factor isomorphic k-regular bipartite graphs exist only for k ≤ 3. In this paper we generalize this result for regular graphs which are not necessarily bipartite. We also introduce strongly pseudo 2-factor isomorphic graphs and we prove that pseudo and strongly pseudo 2-factor isomorphic 2k-regular graphs and k-regular digraphs do not exist for k ≥ 4. Moreover, we present constructions of infinite families of regular graphs in these classes. In particular we show that the family of Flower snarks is strongly pseudo 2-factor isomorphic but not 2-factor isomorphic and we conjecture that, together with the Petersen and the Blanuša2 graphs, they are the only cyclically 4-edge-connected snarks for which each 2-factor contains only cycles of odd length.
2012
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/9237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact