Analytical performances of Laser Induced Breakdown Spectroscopy (LIBS) resulted not fully satisfactory in some cases such as historical bronzes, therefore, efforts should be focussed on improving ablation efficiency and on better understanding the plasma parameter evolution. To this aim a set of double pulse experiments have been carried out in almost collinear geometry at about 530 nm laser excitation. The first emitting source was either a ns or a fs laser the second a ns one. Data were collected as a function of the interpulse delay, in order to determine the ablation efficiency increase, to study the kinetics of plasma parameters (temperature, electron density) and the decay of atomic and ionic intensities with respect to the optical background. In parallel a previously developed model for laser ablation, ionization and following plasma decay, was implemented, adding a second laser pulse, to analyse the double pulse excitation in the considered geometry, and the time evolution of the same variables was investigated. Model results are able to reproduce the observed experimental trends and support the possibility of improving analytical performances by using the double pulse technique with inter-pulse delays in the entire investigated range.

Use of ns and fs pulse excitation in laser-induced breakdown spectroscopy to improve its analytical performances: A case study on quaternary bronze alloys

TEGHIL, Roberto
2014-01-01

Abstract

Analytical performances of Laser Induced Breakdown Spectroscopy (LIBS) resulted not fully satisfactory in some cases such as historical bronzes, therefore, efforts should be focussed on improving ablation efficiency and on better understanding the plasma parameter evolution. To this aim a set of double pulse experiments have been carried out in almost collinear geometry at about 530 nm laser excitation. The first emitting source was either a ns or a fs laser the second a ns one. Data were collected as a function of the interpulse delay, in order to determine the ablation efficiency increase, to study the kinetics of plasma parameters (temperature, electron density) and the decay of atomic and ionic intensities with respect to the optical background. In parallel a previously developed model for laser ablation, ionization and following plasma decay, was implemented, adding a second laser pulse, to analyse the double pulse excitation in the considered geometry, and the time evolution of the same variables was investigated. Model results are able to reproduce the observed experimental trends and support the possibility of improving analytical performances by using the double pulse technique with inter-pulse delays in the entire investigated range.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/91892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact