A graph G is pseudo 2-factor isomorphic if the parity of the number of circuits in a 2-factor is the same for all 2-factors of G. We prove that there exist no pseudo 2-factor isomorphic k-regular bipartite graphs for $k \ge 4$. We also propose a characterization for 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs and obtain some partial results towards our conjecture.
Pseudo 2-factor isomorphic Regular Bipartite Graphs
ABREU, Marien;LABBATE, Domenico;
2008-01-01
Abstract
A graph G is pseudo 2-factor isomorphic if the parity of the number of circuits in a 2-factor is the same for all 2-factors of G. We prove that there exist no pseudo 2-factor isomorphic k-regular bipartite graphs for $k \ge 4$. We also propose a characterization for 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs and obtain some partial results towards our conjecture.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.