A graph G is pseudo 2-factor isomorphic if the parity of the number of circuits in a 2-factor is the same for all 2-factors of G. We prove that there exist no pseudo 2-factor isomorphic k-regular bipartite graphs for $k \ge 4$. We also propose a characterization for 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs and obtain some partial results towards our conjecture.

Pseudo 2-factor isomorphic Regular Bipartite Graphs

ABREU, Marien;LABBATE, Domenico;
2008

Abstract

A graph G is pseudo 2-factor isomorphic if the parity of the number of circuits in a 2-factor is the same for all 2-factors of G. We prove that there exist no pseudo 2-factor isomorphic k-regular bipartite graphs for $k \ge 4$. We also propose a characterization for 3-edge-connected pseudo 2-factor isomorphic cubic bipartite graphs and obtain some partial results towards our conjecture.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/8938
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact