Species-specific recognition between the egg extracellular matrix (zona pellucida) and sperm is the first, crucial step of mammalian fertilization. Zona pellucida filament components ZP3 and ZP2 act as sperm receptors, and mice lacking either of the corresponding genes produce oocytes without a zona pellucida and are completely infertile. Like their counterparts in the vitelline envelope of non-mammalian eggs and many other secreted eukaryotic proteins, zona pellucida subunits polymerize using a 'zona pellucida (ZP) domain' module, whose conserved amino-terminal part (ZP-N) was suggested to constitute a domain of its own. No atomic structure has been reported for ZP domain proteins, and there is no structural information on any conserved vertebrate protein that is essential for fertilization and directly involved in egg-sperm binding. Here we describe the 2.3 ångström (A) resolution structure of the ZP-N fragment of mouse primary sperm receptor ZP3. The ZP-N fold defines a new immunoglobulin superfamily subtype with a beta-sheet extension characterized by an E' strand and an invariant tyrosine residue implicated in polymerization. The structure strongly supports the presence of ZP-N repeats within the N-terminal region of ZP2 and other vertebrate zona pellucida/vitelline envelope proteins, with implications for overall egg coat architecture, the post-fertilization block to polyspermy and speciation. Moreover, it provides an important framework for understanding human diseases caused by mutations in ZP domain proteins and developing new methods of non-hormonal contraception.

Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats

MONNE', MAGNUS LUDVIG;
2008-01-01

Abstract

Species-specific recognition between the egg extracellular matrix (zona pellucida) and sperm is the first, crucial step of mammalian fertilization. Zona pellucida filament components ZP3 and ZP2 act as sperm receptors, and mice lacking either of the corresponding genes produce oocytes without a zona pellucida and are completely infertile. Like their counterparts in the vitelline envelope of non-mammalian eggs and many other secreted eukaryotic proteins, zona pellucida subunits polymerize using a 'zona pellucida (ZP) domain' module, whose conserved amino-terminal part (ZP-N) was suggested to constitute a domain of its own. No atomic structure has been reported for ZP domain proteins, and there is no structural information on any conserved vertebrate protein that is essential for fertilization and directly involved in egg-sperm binding. Here we describe the 2.3 ångström (A) resolution structure of the ZP-N fragment of mouse primary sperm receptor ZP3. The ZP-N fold defines a new immunoglobulin superfamily subtype with a beta-sheet extension characterized by an E' strand and an invariant tyrosine residue implicated in polymerization. The structure strongly supports the presence of ZP-N repeats within the N-terminal region of ZP2 and other vertebrate zona pellucida/vitelline envelope proteins, with implications for overall egg coat architecture, the post-fertilization block to polyspermy and speciation. Moreover, it provides an important framework for understanding human diseases caused by mutations in ZP domain proteins and developing new methods of non-hormonal contraception.
2008
File in questo prodotto:
File Dimensione Formato  
Monne_2008.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 747.03 kB
Formato Adobe PDF
747.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/8930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 106
social impact