In this paper, a supersonic flow of an argon plasma around a cylinder has been investigated comparing shock fitting and shock capturing techniques. Shock-capturing codes are algorithmically simple, but are plagued by a number of numerical troubles, particularly evident when the shocks are strong and the grids unstructured. On the other hand, shock-fitting algorithms allow to accurately compute solutions on coarse meshes, but tend to be algorithmically complex. The kinetic scheme adopted includes the argon metastable state as an independent species and takes into account for electron-atom and atom-atom processes. Electron density distributions have been reported.

Shock-Fitting Versus Shock-Capturing Modeling of Strong Shocks in Nonequilibrium Plasmas

PEPE, RAFFAELE;BONFIGLIOLI, Aldo;D'ANGOLA, Antonio;
2014-01-01

Abstract

In this paper, a supersonic flow of an argon plasma around a cylinder has been investigated comparing shock fitting and shock capturing techniques. Shock-capturing codes are algorithmically simple, but are plagued by a number of numerical troubles, particularly evident when the shocks are strong and the grids unstructured. On the other hand, shock-fitting algorithms allow to accurately compute solutions on coarse meshes, but tend to be algorithmically complex. The kinetic scheme adopted includes the argon metastable state as an independent species and takes into account for electron-atom and atom-atom processes. Electron density distributions have been reported.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/87294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact