In a projective plane PG(2,K) defined over an algebraically closed field K of characteristic 0, we give a complete classification of 3-nets realizing a finite group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614–1624, 2004), arises from plane cubics and comprises 3-nets realizing cyclic and direct products of two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv. Math. 219:672–688, 2008), comprises 3-nets realizing dihedral groups.We prove that there is no further infinite family. Urzúa’s 3-nets (Adv. Geom. 10:287–310, 2010) realizing the quaternion group of order 8 are the unique sporadic examples. If p is larger than the order of the group, the above classification holds in characteristic p >0 apart from three possible exceptions Alt4, Sym4, and Alt5. Motivation for the study of finite 3-nets in the complex plane comes from the study of complex line arrangements and from resonance theory; see (Falk and Yuzvinsky in Compos. Math. 143:1069–1088, 2007; Miguel and Buzunáriz in Graphs Comb. 25:469–488, 2009; Pereira and Yuzvinsky in Adv. Math. 219:672–688, 2008; Yuzvinsky in Compos. Math. 140:1614–1624, 2004; Yuzvinsky in Proc. Am. Math. Soc. 137:1641–1648, 2009)
3-Nets realizing a group in a projective plane
KORCHMAROS, Gabor;
2014-01-01
Abstract
In a projective plane PG(2,K) defined over an algebraically closed field K of characteristic 0, we give a complete classification of 3-nets realizing a finite group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614–1624, 2004), arises from plane cubics and comprises 3-nets realizing cyclic and direct products of two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv. Math. 219:672–688, 2008), comprises 3-nets realizing dihedral groups.We prove that there is no further infinite family. Urzúa’s 3-nets (Adv. Geom. 10:287–310, 2010) realizing the quaternion group of order 8 are the unique sporadic examples. If p is larger than the order of the group, the above classification holds in characteristic p >0 apart from three possible exceptions Alt4, Sym4, and Alt5. Motivation for the study of finite 3-nets in the complex plane comes from the study of complex line arrangements and from resonance theory; see (Falk and Yuzvinsky in Compos. Math. 143:1069–1088, 2007; Miguel and Buzunáriz in Graphs Comb. 25:469–488, 2009; Pereira and Yuzvinsky in Adv. Math. 219:672–688, 2008; Yuzvinsky in Compos. Math. 140:1614–1624, 2004; Yuzvinsky in Proc. Am. Math. Soc. 137:1641–1648, 2009)I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.