We show that any harmonic (with respect to the Bergman metric) vector field tangent to the Levi distribution of the foliation by level sets of the defining function $\varphi (z)=- K(z,z)^{-1/(n+1)}$ of a strictly pseudoconvex bounded domain $\Omega \subset \mathbb{C}^n$ which is smooth up to the boundary must vanish on $\partial \Omega$. If $n \neq 5$ and $u T$ is a harmonic vector field with $u \in C^2(\overline{\Omega})$ then $u|_{\partial \Omega} = 0$.

On the Dirichlet problem for the harmonic vector fields equation

BARLETTA, Elisabetta
2007-01-01

Abstract

We show that any harmonic (with respect to the Bergman metric) vector field tangent to the Levi distribution of the foliation by level sets of the defining function $\varphi (z)=- K(z,z)^{-1/(n+1)}$ of a strictly pseudoconvex bounded domain $\Omega \subset \mathbb{C}^n$ which is smooth up to the boundary must vanish on $\partial \Omega$. If $n \neq 5$ and $u T$ is a harmonic vector field with $u \in C^2(\overline{\Omega})$ then $u|_{\partial \Omega} = 0$.
2007
File in questo prodotto:
File Dimensione Formato  
On the Dirichlet problem for the harmonic vector fields equation.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 327.27 kB
Formato Adobe PDF
327.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/6239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact