We show that any harmonic (with respect to the Bergman metric) vector field tangent to the Levi distribution of the foliation by level sets of the defining function $\varphi (z)=- K(z,z)^{-1/(n+1)}$ of a strictly pseudoconvex bounded domain $\Omega \subset \mathbb{C}^n$ which is smooth up to the boundary must vanish on $\partial \Omega$. If $n \neq 5$ and $u T$ is a harmonic vector field with $u \in C^2(\overline{\Omega})$ then $u|_{\partial \Omega} = 0$.

On the Dirichlet problem for the harmonic vector fields equation

BARLETTA, Elisabetta
2007

Abstract

We show that any harmonic (with respect to the Bergman metric) vector field tangent to the Levi distribution of the foliation by level sets of the defining function $\varphi (z)=- K(z,z)^{-1/(n+1)}$ of a strictly pseudoconvex bounded domain $\Omega \subset \mathbb{C}^n$ which is smooth up to the boundary must vanish on $\partial \Omega$. If $n \neq 5$ and $u T$ is a harmonic vector field with $u \in C^2(\overline{\Omega})$ then $u|_{\partial \Omega} = 0$.
File in questo prodotto:
File Dimensione Formato  
On the Dirichlet problem for the harmonic vector fields equation.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 327.27 kB
Formato Adobe PDF
327.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11563/6239
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact