We obtain a conceptually new differential geometric proof of P. F. Klembeck's result (cf. [9]) that the holomorphic sectional curvature $k_g(z)$ of the Bergman metric of a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n approaches $-4/(n+1)$ (the constant sectional curvature of the Bergman metric of the unit ball) as $z \to \partial \Omega$.

On the boundary behavior of the holomorphic sectional curvature of the Bergman metric

BARLETTA, Elisabetta
2006-01-01

Abstract

We obtain a conceptually new differential geometric proof of P. F. Klembeck's result (cf. [9]) that the holomorphic sectional curvature $k_g(z)$ of the Bergman metric of a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n approaches $-4/(n+1)$ (the constant sectional curvature of the Bergman metric of the unit ball) as $z \to \partial \Omega$.
2006
File in questo prodotto:
File Dimensione Formato  
On the boundary behavior of the holomorphic sectional curvature of the Bergman metric.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 283.03 kB
Formato Adobe PDF
283.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/6238
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact