We obtain a conceptually new differential geometric proof of P. F. Klembeck's result (cf. [9]) that the holomorphic sectional curvature $k_g(z)$ of the Bergman metric of a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n approaches $-4/(n+1)$ (the constant sectional curvature of the Bergman metric of the unit ball) as $z \to \partial \Omega$.
On the boundary behavior of the holomorphic sectional curvature of the Bergman metric
BARLETTA, Elisabetta
2006-01-01
Abstract
We obtain a conceptually new differential geometric proof of P. F. Klembeck's result (cf. [9]) that the holomorphic sectional curvature $k_g(z)$ of the Bergman metric of a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n approaches $-4/(n+1)$ (the constant sectional curvature of the Bergman metric of the unit ball) as $z \to \partial \Omega$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
On the boundary behavior of the holomorphic sectional curvature of the Bergman metric.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
283.03 kB
Formato
Adobe PDF
|
283.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.