Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Scientific and technical activities on JET focus on the issues likely to affect the ITER design and operation. Our understanding of the ITER reference mode of operation, the ELMy H-mode, has progressed significantly. The extrapolation of ELM size to ITER has been re-evaluated. Neoclassical tearing modes have been shown to be meta-stable in JET, and their beta limits can be raised by destabilization (modification) of sawteeth by ion cyclotron radio frequency heating (ICRH). Alpha simulation experiments with ICRH accelerated injected 4He beam ions provide a new tool for fast particle and magnetohydrodynamic studies, with up to 80-90% of plasma heating by fast 4He ions. With or without impurity seeding, a quasi-steady-state high confinement (H98 = 1), high density (ne/nGW = 0.9-1) and high β (βN = 2) ELMy H-mode has been achieved by operating near the ITER triangularity (δ ∼ 0.40-0.5) and safety factor (q95 ∼ 3), at Zeff ∼ 1.5-2. In advanced tokamak (AT) scenarios, internal transport barriers (ITBs) are now characterized in real time with a new criterion, ρT*. Tailoring of the current profile with lower hybrid current drive provides reliable access to a variety of q profiles, lowering access power for barrier formation. Rational q surfaces appear to be associated with ITB formation. Alfvén cascades were observed in reversed shear plasmas, providing identification of q profile evolution. Plasmas with 'current holes' were observed and modelled. Transient high confinement AT regimes with H89 = 3.3, βN = 2.4 and ITER-relevant q < 5 were achieved with reversed magnetic shear. Quasi-stationary ITBs are developed with full non-inductive current drive, including ∼ 50% bootstrap current. A record duration of ITBs was achieved, up to 11 s, approaching the resistive time. For the first time, pressure and current profiles of AT regimes are controlled by a real-time feedback system, in separate experiments. Erosion and co-deposition studies with a quartz micro-balance show reduced co-deposition. Measured divertor thermal loads during disruptions in JET could modify ITER assumptions.
Overview of JET results
Paméla, J.;Emilia, R. Solano;Romanelli, F.;Laxåback, M.;Abel, I.;Afanesyev, V.;Agarici, G.;Aggarwal, K. M.;Airila, M.;Akers, R.;Alarcon, T.h.;Albanese, R.;Alexeev, A.;Alfier, A.;Allan, P.;Almaviva, S.;Alonso, A.;Alonso, M.;Alper, B.;Altmann, H.;Alves, D.;Ambrosino, G.;Amosov, V.;Anda, G.;Andersson, F.;Andersson Sund´en, E.;Andreev, V.;Andrew, Y.;Angelone, M.;Anghel, M.;Anghel, A.;Angioni, C.;Apruzzese, G.;Arcis, N.;Arena, P.;Argouarch, A.;Ariola, M.;Armitano, A.;Armstrong, R.;Arnoux, G.;Arshad, S.;Artaserse, G.;Artaud, J. F.;Ash, A.;Asp, E.;Asunta, O.;Atanasiu, C. V.;Atkins, G.;Axton, M. D.;Ayres, C.;Baciero, A.;Bailescu, V.;Baiocchi, B.;Baker, R. A.;Balboa, I.;Balorin, C.;Balshaw, N.;Banks, J. W.;Baranov, Y. F.;Barbier, D.;Barlow, I. L.;Barnard, M. A.;Barnsley, R.;Barrena, L.;Barrera, L.;Baruzzo, M.;Basiuk, V.;Bateman, G.;Batistoni, P.;Baumgarten, N.;Baylor, L.;Bazylev, B.;Beaumont, P. S.;Beausang, K.;B´ecoulet, M.;Bekris, N.;Beldishevski, M.;Bell, A. C.;Belli, F.;Bellinger, M.;Bellizio, T.;Belo, P. S. A.;Belonohy, ´ E.;Bennett, P. E.;Benterman, N. A.;Berger By, G.;Bergsåker, H.;Berk, H.;Bernardo, J.;Bertrand, B.;Beurskens, M. N. A.;Bieg, B.;Bienkowska, B.;Biewer, T.;Biewer, T. M.;Bigi, M.;Bilato, R.;Bird, J.;Bizarro, J.;Blackman, T. R.;Blanchard, P.;Blanco, E.;Blum, J.;Bobkov, V.;Boboc, A.;Boilson, D.;Bolshakova, I.;Bolzonella, T.;Boncagni, L.;Bonheure, G.;Bonnin, X.;Borba, D.;Borthwick, A.;Botrugno, A.;Boulbe, C.;Bouquey, F.;Bourdelle, C.;Bovert, K. V.;Bowden, M.;Boyce, T.;Boyer, H. J.;Bozhenkov, A.;Brade, R. J.;Bradshaw, J. M. A.;Braet, J.;Braic, V.;Braithwaite, G. C.;Brault, C.;Braune, H.;Breizman, B.;Bremond, S.;Brennan, P. D.;Brett, A.;Breue, J.;Brezinsek, S.;Bright, M. D. J.;Briscoe, F.;Brix, M.;Brombin, M.;Brown, B. C.;Brown, D. P. D.;Bruschi, A.;Brzozowski, J.;Bucalossi, J.;Buckley, M. A.;Budd, T.;Budny, R.;Budny, R. V.;Bunting, P.;Buratti, P.;Burcea, G.;Butcher, P. R.;Buttery, R. J.;Cac¸ ˜ao, R.;Calabr`o, G.;Callaghan, C. P.;Caminade, J. P.;Camp, P. G.;Campling, D. C.;Canik, J.;Cannas, B.;Capel, A. J.;Carannante, G.;Card, P. J.;Cardinali, A.;Carlstrom, T.;Carman, P.;Carralero, D.;Carraro, L.;Carter, T.;Carvalho, B. B.;Carvalho, P.;Casati, A.;Castaldo, C.;Caughman, J.;Cavazzana, R.;Cavinato, M.;Cecconello, M.;Cecil, F. E.;Cenedese, A.;Centioli, C.;Cesario, R.;Challis, C. D.;Chandler, M.;Chang, C.;Chankin, A.;Chapman, I. T.;Child, D. J.;Chiru, P.;Chitarin, G.;Chugonov, I.;Chugunov, I.;Ciric, D.;Clairet, F.;Clarke, R. H.;Clay, R.;Clever, M.;Coad, J. P.;Coates, P. A.;Coccorese, V.;Cocilovo, V.;Coda, S.;Coelho, R.;Coenen, J.;Coffey, I.;Colas, L.;Cole, M.;Collins, S.;Combs, S.;Compan, J.;Conboy, J. E.;Conroy, S.;Cook, N.;Cook, S. P.;Coombs, D.;Cooper, S. R.;Corre, Y.;Corrigan, G.;Cortes, S.;Coster, D.;Counsell, G. F.;Courtois, X.;Cox, M.;Craciunescu, T.;Cramp, S.;Crisanti, F.;Croft, O.;Crombe, K.;Crowley, B. J.;Cruz, N.;Cupido, L.;Curuia, M.;Cusack, R. A.;Czarnecka, A.;Dalley, S.;Daly, E. T.;Dalziel, A.;Darrow, D.;David, O.;Davies, N.;Davis, J. J.;Day, I. E.;Day, C.;De Angelis, R.;Dearcas, G.;de Baar, M. R.;de la Cal, E.;de la Luna, E.;de Pablos, J. L.;De Temmerman, G.;De Tommasi, G.;de Vries, P. C.;De Angelis, R.;Degli Agostini, F.;Delabie, E.;del Castillo Negrete, D.;Delpech, L.;Denisov, G.;Denyer, A. J.;Denyer, R. F.;Devaux, S.;Devynck, P.;Di Matteo, L.;Di Pace, L.;Dirken, P. J.;Dnestrovskiy, A.;Dodt, D.;Dominiczak, K.;Dorling, S. E.;Douai, D.;Down, A. P.;Doyle, P. T.;Drake, J. R.;Dreischuh, T.;Drozdov, V.;Dumortier, P.;Dunai, D.;Duran, I.;Durodi´e, F.;Dylst, K.;Eaton, R.;Edlington, T.;Edwards, A. M.;Edwards, D. T.;Edwards, P. K.;Eich, T.h.;Ekedahl, A.;Elevant, T.;Elfimov, A.;Ellingboe, B.;Elsmore, C. G.;Emmoth, B.;Ericsson, G.;Eriksson, L. G.;Eriksson, A.;Esposito, B.;Esser, H. G.;Estrada, T.;Evangelidis, E. A.;Evans, G. E.;Ewart, G. D.;Ewers, D. T.;Falchetto, G.;Falie, D.;Fanthome, J. G. A.;Farina, D.;Farthing, J. W.;Fasoli, A.;Faugeras, B.;Fedorczak, N.;Felton, R. C.;Fenzi, C.;Fernandes, H.;Ferreira, J. A.;Ferreira, J.;Ferron, J.;Fessey, J. A.;Figini, L.;Figueiredo, A.;Figueiredo, J.;Finburg, P.;Finken, K. H.;Fischer, U.;Fitzgerald, N.;Flanagan, J.;Fleming, C.;Fonseca, A.;Forbes, A. D.;Ford, O.;Formisano, A.;Fraboulet, D.;Francis, R. J.;Frassinetti, L.;FRESA, RAFFAELE
2003-01-01
Abstract
Scientific and technical activities on JET focus on the issues likely to affect the ITER design and operation. Our understanding of the ITER reference mode of operation, the ELMy H-mode, has progressed significantly. The extrapolation of ELM size to ITER has been re-evaluated. Neoclassical tearing modes have been shown to be meta-stable in JET, and their beta limits can be raised by destabilization (modification) of sawteeth by ion cyclotron radio frequency heating (ICRH). Alpha simulation experiments with ICRH accelerated injected 4He beam ions provide a new tool for fast particle and magnetohydrodynamic studies, with up to 80-90% of plasma heating by fast 4He ions. With or without impurity seeding, a quasi-steady-state high confinement (H98 = 1), high density (ne/nGW = 0.9-1) and high β (βN = 2) ELMy H-mode has been achieved by operating near the ITER triangularity (δ ∼ 0.40-0.5) and safety factor (q95 ∼ 3), at Zeff ∼ 1.5-2. In advanced tokamak (AT) scenarios, internal transport barriers (ITBs) are now characterized in real time with a new criterion, ρT*. Tailoring of the current profile with lower hybrid current drive provides reliable access to a variety of q profiles, lowering access power for barrier formation. Rational q surfaces appear to be associated with ITB formation. Alfvén cascades were observed in reversed shear plasmas, providing identification of q profile evolution. Plasmas with 'current holes' were observed and modelled. Transient high confinement AT regimes with H89 = 3.3, βN = 2.4 and ITER-relevant q < 5 were achieved with reversed magnetic shear. Quasi-stationary ITBs are developed with full non-inductive current drive, including ∼ 50% bootstrap current. A record duration of ITBs was achieved, up to 11 s, approaching the resistive time. For the first time, pressure and current profiles of AT regimes are controlled by a real-time feedback system, in separate experiments. Erosion and co-deposition studies with a quartz micro-balance show reduced co-deposition. Measured divertor thermal loads during disruptions in JET could modify ITER assumptions.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/58645
Citazioni
ND
16
36
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.