Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) is an endophagous parasitoid of the tobacco budworm Heliothis virescens (F.) (Lepidoptera, Noctuidae). Parasitized H. virescens larvae are developmentally arrested and show a complex array of pathological symptoms ranging from the suppression of the immune response to an alteration of ecdysone biosynthesis and metabolism. Most of these pathological syndromes are induced by the polydnavirus associated with T. nigriceps (TnBV). An overview of our recent research work on this system is described herein. The mechanisms involved in the disruption of the host hormonal balance have been further investigated, allowing to better define the physiological model previously proposed. A functional genomic approach has been undertaken to identify TnBV genes expressed in the host and to assess their role in the major parasitoid-induced pathologies. Some TnBV genes cloned so far are novel and do not show any similarity with genes already available in genomic databases, while others code for proteins having conserved domains, such as aspartic proteases and tyrosine phosphatases. Sequencing of the entire TnBV genome is in progress and will considerably contribute to the understanding of the molecular bases of parasitoid-induced host alterations.
Physiological and molecular interaction in the host-parasitoid system Heliothis virescens-Toxoneuron nigriceps: current status and future perspectives.
FALABELLA, Patrizia;
2004-01-01
Abstract
Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) is an endophagous parasitoid of the tobacco budworm Heliothis virescens (F.) (Lepidoptera, Noctuidae). Parasitized H. virescens larvae are developmentally arrested and show a complex array of pathological symptoms ranging from the suppression of the immune response to an alteration of ecdysone biosynthesis and metabolism. Most of these pathological syndromes are induced by the polydnavirus associated with T. nigriceps (TnBV). An overview of our recent research work on this system is described herein. The mechanisms involved in the disruption of the host hormonal balance have been further investigated, allowing to better define the physiological model previously proposed. A functional genomic approach has been undertaken to identify TnBV genes expressed in the host and to assess their role in the major parasitoid-induced pathologies. Some TnBV genes cloned so far are novel and do not show any similarity with genes already available in genomic databases, while others code for proteins having conserved domains, such as aspartic proteases and tyrosine phosphatases. Sequencing of the entire TnBV genome is in progress and will considerably contribute to the understanding of the molecular bases of parasitoid-induced host alterations.File | Dimensione | Formato | |
---|---|---|---|
IBMB04PDV.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
588.94 kB
Formato
Adobe PDF
|
588.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.