In this paper we study the nonlinear Schrödinger–Maxwell equations −\Delta u + V (x)u +φu = |u|^{p−1}u in R3, −\Delta φ = u^2 in R^3. If V is a positive constant, we prove the existence of a ground state solution (u,φ) for 2 < p < 5. The non-constant potential case is treated for 3 < p < 5, and V possibly unbounded below. Existence and nonexistence results are proved also when the nonlinearity exhibits a critical growth.

Ground state solutions for the nonlinear Schrodinger-Maxwell equations

AZZOLLINI, ANTONIO;
2008-01-01

Abstract

In this paper we study the nonlinear Schrödinger–Maxwell equations −\Delta u + V (x)u +φu = |u|^{p−1}u in R3, −\Delta φ = u^2 in R^3. If V is a positive constant, we prove the existence of a ground state solution (u,φ) for 2 < p < 5. The non-constant potential case is treated for 3 < p < 5, and V possibly unbounded below. Existence and nonexistence results are proved also when the nonlinearity exhibits a critical growth.
2008
File in questo prodotto:
File Dimensione Formato  
AP_JMAA.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 448.36 kB
Formato Adobe PDF
448.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11563/5411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 415
social impact