In this paper, the authors introduce a Nystrom method for solving systems of Fredholm integral equations on the real semiaxis. They prove that the method is stable and convergent. Moreover, they show some numerical tests that confirm the error estimates. Finally, they discuss a specific application to an inverse scattering problem for the Schrodinger equation.
Nyström method for systems of integral equations on the real semiaxis
DE BONIS, Maria Carmela;MASTROIANNI, Giuseppe Maria
2009-01-01
Abstract
In this paper, the authors introduce a Nystrom method for solving systems of Fredholm integral equations on the real semiaxis. They prove that the method is stable and convergent. Moreover, they show some numerical tests that confirm the error estimates. Finally, they discuss a specific application to an inverse scattering problem for the Schrodinger equation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DeBonisMastroianniIMA2009.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
196.54 kB
Formato
Adobe PDF
|
196.54 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.